|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "raw", |
| 5 | + "id": "afaf8039", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "---\n", |
| 9 | + "sidebar_label: Naver\n", |
| 10 | + "---" |
| 11 | + ] |
| 12 | + }, |
| 13 | + { |
| 14 | + "cell_type": "markdown", |
| 15 | + "id": "e49f1e0d", |
| 16 | + "metadata": {}, |
| 17 | + "source": [ |
| 18 | + "# ClovaXEmbeddings\n", |
| 19 | + "\n", |
| 20 | + "This notebook covers how to get started with embedding models provided by CLOVA Studio. For detailed documentation on `ClovaXEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/community/embeddings/langchain_community.naver.ClovaXEmbeddings.html).\n", |
| 21 | + "\n", |
| 22 | + "## Overview\n", |
| 23 | + "### Integration details\n", |
| 24 | + "\n", |
| 25 | + "| Provider | Package |\n", |
| 26 | + "|:--------:|:-------:|\n", |
| 27 | + "| [Naver](/docs/integrations/providers/naver.mdx) | [langchain-community](https://python.langchain.com/api_reference/community/embeddings/langchain_community.naver.ClovaXEmbeddings.html) |\n", |
| 28 | + "\n", |
| 29 | + "## Setup\n", |
| 30 | + "\n", |
| 31 | + "Before using embedding models provided by CLOVA Studio, you must go through the three steps below.\n", |
| 32 | + "\n", |
| 33 | + "1. Creating [NAVER Cloud Platform](https://www.ncloud.com/) account \n", |
| 34 | + "2. Apply to use [CLOVA Studio](https://www.ncloud.com/product/aiService/clovaStudio)\n", |
| 35 | + "3. Find API Keys after creating CLOVA Studio Test App or Service App (See [here](https://guide.ncloud-docs.com/docs/en/clovastudio-playground01#테스트앱생성).)\n", |
| 36 | + "\n", |
| 37 | + "### Credentials\n", |
| 38 | + "\n", |
| 39 | + "CLOVA Studio requires 3 keys (`NCP_CLOVASTUDIO_API_KEY`, `NCP_APIGW_API_KEY` and `NCP_CLOVASTUDIO_APP_ID`) for embeddings.\n", |
| 40 | + "- `NCP_CLOVASTUDIO_API_KEY` and `NCP_CLOVASTUDIO_APP_ID` is issued per serviceApp or testApp\n", |
| 41 | + "- `NCP_APIGW_API_KEY` is issued per account\n", |
| 42 | + "\n", |
| 43 | + "The two API Keys could be found by clicking `App Request Status` > `Service App, Test App List` > `‘Details’ button for each app` in [CLOVA Studio](https://clovastudio.ncloud.com/studio-application/service-app)." |
| 44 | + ] |
| 45 | + }, |
| 46 | + { |
| 47 | + "cell_type": "code", |
| 48 | + "execution_count": null, |
| 49 | + "id": "c52e8a50-3e67-4272-bc80-3954d98f8dea", |
| 50 | + "metadata": {}, |
| 51 | + "outputs": [], |
| 52 | + "source": [ |
| 53 | + "import getpass\n", |
| 54 | + "import os\n", |
| 55 | + "\n", |
| 56 | + "if not os.getenv(\"NCP_CLOVASTUDIO_API_KEY\"):\n", |
| 57 | + " os.environ[\"NCP_CLOVASTUDIO_API_KEY\"] = getpass.getpass(\n", |
| 58 | + " \"Enter NCP CLOVA Studio API Key: \"\n", |
| 59 | + " )\n", |
| 60 | + "if not os.getenv(\"NCP_APIGW_API_KEY\"):\n", |
| 61 | + " os.environ[\"NCP_APIGW_API_KEY\"] = getpass.getpass(\"Enter NCP API Gateway API Key: \")" |
| 62 | + ] |
| 63 | + }, |
| 64 | + { |
| 65 | + "cell_type": "code", |
| 66 | + "execution_count": null, |
| 67 | + "id": "83520d8e-ecf8-4e47-b3bc-1ac205b3a2ab", |
| 68 | + "metadata": {}, |
| 69 | + "outputs": [], |
| 70 | + "source": [ |
| 71 | + "os.environ[\"NCP_CLOVASTUDIO_APP_ID\"] = input(\"Enter NCP CLOVA Studio App ID: \")" |
| 72 | + ] |
| 73 | + }, |
| 74 | + { |
| 75 | + "cell_type": "markdown", |
| 76 | + "id": "ff00653e", |
| 77 | + "metadata": {}, |
| 78 | + "source": [ |
| 79 | + "### Installation\n", |
| 80 | + "\n", |
| 81 | + "ClovaXEmbeddings integration lives in the `langchain_community` package:" |
| 82 | + ] |
| 83 | + }, |
| 84 | + { |
| 85 | + "cell_type": "code", |
| 86 | + "execution_count": null, |
| 87 | + "id": "99400c9b", |
| 88 | + "metadata": {}, |
| 89 | + "outputs": [], |
| 90 | + "source": [ |
| 91 | + "# install package\n", |
| 92 | + "!pip install -U langchain-community" |
| 93 | + ] |
| 94 | + }, |
| 95 | + { |
| 96 | + "cell_type": "markdown", |
| 97 | + "id": "2651e611-9d5b-4315-9bbd-f99f56be4e19", |
| 98 | + "metadata": {}, |
| 99 | + "source": [ |
| 100 | + "## Instantiation\n", |
| 101 | + "\n", |
| 102 | + "Now we can instantiate our embeddings object and embed query or document:\n", |
| 103 | + "\n", |
| 104 | + "- There are several embedding models available in CLOVA Studio. Please refer [here](https://guide.ncloud-docs.com/docs/en/clovastudio-explorer03#임베딩API) for further details.\n", |
| 105 | + "- Note that you might need to normalize the embeddings depending on your specific use case." |
| 106 | + ] |
| 107 | + }, |
| 108 | + { |
| 109 | + "cell_type": "code", |
| 110 | + "execution_count": 7, |
| 111 | + "id": "62e0dbc3", |
| 112 | + "metadata": { |
| 113 | + "scrolled": true, |
| 114 | + "tags": [] |
| 115 | + }, |
| 116 | + "outputs": [], |
| 117 | + "source": [ |
| 118 | + "from langchain_community.embeddings import ClovaXEmbeddings\n", |
| 119 | + "\n", |
| 120 | + "embeddings = ClovaXEmbeddings(\n", |
| 121 | + " model=\"clir-emb-dolphin\", # set with the model name of corresponding app id. Default is `clir-emb-dolphin`\n", |
| 122 | + " # app_id=\"...\" # set if you prefer to pass app id directly instead of using environment variables\n", |
| 123 | + ")" |
| 124 | + ] |
| 125 | + }, |
| 126 | + { |
| 127 | + "cell_type": "markdown", |
| 128 | + "id": "0493b4a8", |
| 129 | + "metadata": {}, |
| 130 | + "source": [ |
| 131 | + "## Indexing and Retrieval\n", |
| 132 | + "\n", |
| 133 | + "Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our RAG tutorials under the [working with external knowledge tutorials](/docs/tutorials/#working-with-external-knowledge).\n", |
| 134 | + "\n", |
| 135 | + "Below, see how to index and retrieve data using the `embeddings` object we initialized above. In this example, we will index and retrieve a sample document in the `InMemoryVectorStore`." |
| 136 | + ] |
| 137 | + }, |
| 138 | + { |
| 139 | + "cell_type": "code", |
| 140 | + "execution_count": 8, |
| 141 | + "id": "d4d59653", |
| 142 | + "metadata": {}, |
| 143 | + "outputs": [ |
| 144 | + { |
| 145 | + "data": { |
| 146 | + "text/plain": [ |
| 147 | + "'CLOVA Studio is an AI development tool that allows you to customize your own HyperCLOVA X models.'" |
| 148 | + ] |
| 149 | + }, |
| 150 | + "execution_count": 8, |
| 151 | + "metadata": {}, |
| 152 | + "output_type": "execute_result" |
| 153 | + } |
| 154 | + ], |
| 155 | + "source": [ |
| 156 | + "# Create a vector store with a sample text\n", |
| 157 | + "from langchain_core.vectorstores import InMemoryVectorStore\n", |
| 158 | + "\n", |
| 159 | + "text = \"CLOVA Studio is an AI development tool that allows you to customize your own HyperCLOVA X models.\"\n", |
| 160 | + "\n", |
| 161 | + "vectorstore = InMemoryVectorStore.from_texts(\n", |
| 162 | + " [text],\n", |
| 163 | + " embedding=embeddings,\n", |
| 164 | + ")\n", |
| 165 | + "\n", |
| 166 | + "# Use the vectorstore as a retriever\n", |
| 167 | + "retriever = vectorstore.as_retriever()\n", |
| 168 | + "\n", |
| 169 | + "# Retrieve the most similar text\n", |
| 170 | + "retrieved_documents = retriever.invoke(\"What is CLOVA Studio?\")\n", |
| 171 | + "\n", |
| 172 | + "# show the retrieved document's content\n", |
| 173 | + "retrieved_documents[0].page_content" |
| 174 | + ] |
| 175 | + }, |
| 176 | + { |
| 177 | + "cell_type": "markdown", |
| 178 | + "id": "b1a249e1", |
| 179 | + "metadata": {}, |
| 180 | + "source": [ |
| 181 | + "## Direct Usage\n", |
| 182 | + "\n", |
| 183 | + "Under the hood, the vectorstore and retriever implementations are calling `embeddings.embed_documents(...)` and `embeddings.embed_query(...)` to create embeddings for the text(s) used in `from_texts` and retrieval `invoke` operations, respectively.\n", |
| 184 | + "\n", |
| 185 | + "You can directly call these methods to get embeddings for your own use cases.\n", |
| 186 | + "\n", |
| 187 | + "### Embed single texts\n", |
| 188 | + "\n", |
| 189 | + "You can embed single texts or documents with `embed_query`:" |
| 190 | + ] |
| 191 | + }, |
| 192 | + { |
| 193 | + "cell_type": "code", |
| 194 | + "execution_count": 9, |
| 195 | + "id": "12fcfb4b", |
| 196 | + "metadata": {}, |
| 197 | + "outputs": [ |
| 198 | + { |
| 199 | + "name": "stdout", |
| 200 | + "output_type": "stream", |
| 201 | + "text": [ |
| 202 | + "[-0.094717406, -0.4077411, -0.5513184, 1.6024436, -1.3235079, -1.0720996, -0.44471845, 1.3665184, 0.\n" |
| 203 | + ] |
| 204 | + } |
| 205 | + ], |
| 206 | + "source": [ |
| 207 | + "single_vector = embeddings.embed_query(text)\n", |
| 208 | + "print(str(single_vector)[:100]) # Show the first 100 characters of the vector" |
| 209 | + ] |
| 210 | + }, |
| 211 | + { |
| 212 | + "cell_type": "markdown", |
| 213 | + "id": "8b383b53", |
| 214 | + "metadata": {}, |
| 215 | + "source": [ |
| 216 | + "### Embed multiple texts\n", |
| 217 | + "\n", |
| 218 | + "You can embed multiple texts with `embed_documents`:" |
| 219 | + ] |
| 220 | + }, |
| 221 | + { |
| 222 | + "cell_type": "code", |
| 223 | + "execution_count": 10, |
| 224 | + "id": "1f2e6104", |
| 225 | + "metadata": {}, |
| 226 | + "outputs": [ |
| 227 | + { |
| 228 | + "name": "stdout", |
| 229 | + "output_type": "stream", |
| 230 | + "text": [ |
| 231 | + "[-0.094717406, -0.4077411, -0.5513184, 1.6024436, -1.3235079, -1.0720996, -0.44471845, 1.3665184, 0.\n", |
| 232 | + "[-0.25525448, -0.84877056, -0.6928286, 1.5867524, -1.2930486, -0.8166254, -0.17934391, 1.4236152, 0.\n" |
| 233 | + ] |
| 234 | + } |
| 235 | + ], |
| 236 | + "source": [ |
| 237 | + "text2 = \"LangChain is the framework for building context-aware reasoning applications\"\n", |
| 238 | + "two_vectors = embeddings.embed_documents([text, text2])\n", |
| 239 | + "for vector in two_vectors:\n", |
| 240 | + " print(str(vector)[:100]) # Show the first 100 characters of the vector" |
| 241 | + ] |
| 242 | + }, |
| 243 | + { |
| 244 | + "cell_type": "markdown", |
| 245 | + "id": "eee40d32367cc5c4", |
| 246 | + "metadata": {}, |
| 247 | + "source": [ |
| 248 | + "## Additional functionalities\n", |
| 249 | + "\n", |
| 250 | + "### Service App\n", |
| 251 | + "\n", |
| 252 | + "When going live with production-level application using CLOVA Studio, you should apply for and use Service App. (See [here](https://guide.ncloud-docs.com/docs/en/clovastudio-playground01#서비스앱신청).)\n", |
| 253 | + "\n", |
| 254 | + "For a Service App, corresponding `NCP_CLOVASTUDIO_API_KEY` and `NCP_CLOVASTUDIO_APP_ID` are issued and can only be called with them." |
| 255 | + ] |
| 256 | + }, |
| 257 | + { |
| 258 | + "cell_type": "code", |
| 259 | + "execution_count": null, |
| 260 | + "id": "08f9f44e-c6a4-4163-8caf-27a0cda345b7", |
| 261 | + "metadata": {}, |
| 262 | + "outputs": [], |
| 263 | + "source": [ |
| 264 | + "# Update environment variables\n", |
| 265 | + "\n", |
| 266 | + "os.environ[\"NCP_CLOVASTUDIO_API_KEY\"] = getpass.getpass(\n", |
| 267 | + " \"Enter NCP CLOVA Studio API Key for Service App: \"\n", |
| 268 | + ")\n", |
| 269 | + "os.environ[\"NCP_CLOVASTUDIO_APP_ID\"] = input(\"Enter NCP CLOVA Studio Service App ID: \")" |
| 270 | + ] |
| 271 | + }, |
| 272 | + { |
| 273 | + "cell_type": "code", |
| 274 | + "execution_count": null, |
| 275 | + "id": "86f59698-b3f4-4b19-a9d4-4facfcea304b", |
| 276 | + "metadata": {}, |
| 277 | + "outputs": [], |
| 278 | + "source": [ |
| 279 | + "embeddings = ClovaXEmbeddings(\n", |
| 280 | + " service_app=True,\n", |
| 281 | + " model=\"clir-emb-dolphin\", # set with the model name of corresponding app id of your Service App\n", |
| 282 | + " # app_id=\"...\" # set if you prefer to pass app id directly instead of using environment variables\n", |
| 283 | + ")" |
| 284 | + ] |
| 285 | + }, |
| 286 | + { |
| 287 | + "cell_type": "markdown", |
| 288 | + "id": "1ddeaee9", |
| 289 | + "metadata": {}, |
| 290 | + "source": [ |
| 291 | + "## API Reference\n", |
| 292 | + "\n", |
| 293 | + "For detailed documentation on `ClovaXEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/latest/api_reference/community/embeddings/langchain_community.embeddings.naver.ClovaXEmbeddings.html)." |
| 294 | + ] |
| 295 | + } |
| 296 | + ], |
| 297 | + "metadata": { |
| 298 | + "kernelspec": { |
| 299 | + "display_name": "Python 3 (ipykernel)", |
| 300 | + "language": "python", |
| 301 | + "name": "python3" |
| 302 | + }, |
| 303 | + "language_info": { |
| 304 | + "codemirror_mode": { |
| 305 | + "name": "ipython", |
| 306 | + "version": 3 |
| 307 | + }, |
| 308 | + "file_extension": ".py", |
| 309 | + "mimetype": "text/x-python", |
| 310 | + "name": "python", |
| 311 | + "nbconvert_exporter": "python", |
| 312 | + "pygments_lexer": "ipython3", |
| 313 | + "version": "3.12.3" |
| 314 | + } |
| 315 | + }, |
| 316 | + "nbformat": 4, |
| 317 | + "nbformat_minor": 5 |
| 318 | +} |
0 commit comments