Count the number of prime numbers less than a non-negative number, n
.
Example 1:
Input: n = 10
Output: 4
Explanation: There are 4 prime numbers less than 10, they are 2, 3, 5, 7.
Example 2:
Input: n = 0
Output: 0
Example 3:
Input: n = 1
Output: 0
Constraints:
0 <= n <= 5 * 106
int countPrimes(int n){
int res = 0;
for(int i = 2; i < n; i++){
if(isPrime(i))
res++;
}
return res;
}
int isPrime(int num){
for(int i = 2; i * i <= num; i++){
if(num % i == 0){
return false;
}
}
return true;
}
int countPrimes(int n){
if(n < 1)
return 0;
bool isPrime[n];
memset(isPrime, true, n);
for(int i = 2; i * i < n; i++){
if(isPrime[i]){
for(int j = i * i; j < n; j += i){
isPrime[j] = false;
}
}
}
int res = 0;
for(int i = 2; i < n; i++){
if(isPrime[i])
res++;
}
return res;
}
class Solution {
public int countPrimes(int n) {
int res = 0;
for(int i = 2; i < n; i++){
if(isPrime(i))
res++;
}
return res;
}
boolean isPrime(int num){
for(int i = 2; i * i <= num; i++){
if(num % i == 0)
return false;
}
return true;
}
}
class Solution {
public int countPrimes(int n) {
int res = 0;
boolean[] isPrime = new boolean[n];
Arrays.fill(isPrime, true);
for(int i = 2; i * i < n; i++) {
if(isPrime[i]) {
for(int j = i * i; j < n; j += i){
isPrime[j] = false;
}
}
}
for(int i = 2; i < n; i++) {
if(isPrime[i]){
res++;
}
}
return res;
}
}