Given an array of integers nums
sorted in ascending order, find the starting and ending position of a given target
value.
If target
is not found in the array, return [-1, -1]
.
Follow up: Could you write an algorithm with O(log n)
runtime complexity?
Example 1:
Input: nums = [5,7,7,8,8,10], target = 8
Output: [3,4]
Example 2:
Input: nums = [5,7,7,8,8,10], target = 6
Output: [-1,-1]
Example 3:
Input: nums = [], target = 0
Output: [-1,-1]
Constraints:
0 <= nums.length <= 105
-109 <= nums[i] <= 109
nums
is a non-decreasing array.-109 <= target <= 109
class Solution {
public int[] searchRange(int[] nums, int target) {
int[] temp = {-1, -1};
if(nums == null || nums.length == 0)
return temp;
int i = 0;
int j = nums.length - 1;
while(i <= j){
int m = (i + j) / 2;
if(nums[m] <= target)
i = m + 1;
else
j = m - 1;
}
if(j >= 0 && nums[j] != target || j < 0)
return temp;
temp[1] = i - 1;
i = 0;
j = nums.length - 1;
while(i <= j){
int m = (i + j) / 2;
if(nums[m] < target)
i = m + 1;
else
j = m - 1;
}
temp[0] = j + 1;
return temp;
}
}