Skip to content

Commit 9da0d35

Browse files
committed
update README.zh-CN.md
1 parent ee00b94 commit 9da0d35

File tree

1 file changed

+77
-0
lines changed

1 file changed

+77
-0
lines changed

README.zh-CN.md

+77
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,77 @@
1+
# imagecorruptions
2+
3+
![image corruptions](https://raw.githubusercontent.com/bethgelab/imagecorruptions/master/assets/corruptions_sev_3.png?token=ACY4L7YQWNOLTMRRO53U6FS5G3UF6)
4+
5+
**[中文](./README.zh-CN.md)** | **[English](./README.md)**
6+
7+
这个存储库是从 [CrazyVertigo/imagecorruptions](https://github.com/CrazyVertigo/imagecorruptions) 派生出来的,目前由本人 [Allenpandas](https://github.com/Allenpandas) 维护,本代码在原始存储库的代码的基础上进行了优化和调整。如果您有任何疑问,欢迎随时提交 [pull request](https://github.com/Allenpandas/imagecorruptions/pulls) 🤝,或 [联系我 ](https://github.com/users/follow?target=Allenpandas)📮。这个仓库代码提供了一组可以应用于图像的损坏,以便对神经网络的鲁棒性进行基准测试。这些破坏不是用来增强训练数据的,而是用来测试网络对看不见的扰动的抵抗能力。欲了解更多信息,请参阅 Hendrycks 和 Dietterich 关于 image corruption的论文:[Benchmarking Neural Network Robustness to Common Corruptions and Surface Variations](https://arxiv.org/abs/1807.01697)
8+
9+
**注意:** 这个仓库来源于 [CrazyVertigo/imagecorruptions](https://github.com/CrazyVertigo/imagecorruptions) , 且仓库 [CrazyVertigo/imagecorruptions](https://github.com/CrazyVertigo/imagecorruptions) 来源于 [bethgelab/imagecorruptions](https://github.com/bethgelab/imagecorruptions).
10+
11+
## Installation and Usage
12+
通过pip安装所需要的依赖包: `pip3 install imagecorruptions`.
13+
14+
下面给出了如何使用的示例,您也可以在根目录下的`examples.py`文件中找到相应的代码。
15+
16+
```python
17+
from PIL import Image
18+
import numpy as np
19+
from imagecorruptions import corrupt
20+
import os
21+
import random
22+
23+
24+
def apply_corruption(input_image_path, output_folder, corruption_list=None):
25+
# 创建输出目录
26+
os.makedirs(output_folder, exist_ok=True)
27+
# 读取图像并将PIL图像转换为NumPy数组
28+
image = Image.open(input_image_path)
29+
image_array = np.array(image)
30+
# 随机选择corruption效果
31+
corruption_name = random.choice(corruption_list)
32+
# 执行corruption
33+
corrupted_image_array = corrupt(image_array, corruption_name=corruption_name, severity=1)
34+
# 转换处理后的图像数组为 PIL 图像对象
35+
corrupted_image = Image.fromarray(corrupted_image_array)
36+
# 拼接输出图像的文件名和路径
37+
output_image_path = os.path.join(output_folder, os.path.basename(input_image_path))
38+
# 保存输出图像
39+
corrupted_image.save(output_image_path)
40+
41+
42+
def apply_corruption_to_folder(input_folder, output_folder, corruption_list=None):
43+
for filename in os.listdir(input_folder):
44+
# 获取目录下所有的.jpg和png图像
45+
if filename.endswith(".jpg") or filename.endswith(".png"):
46+
input_image_path = os.path.join(input_folder, filename)
47+
# 逐一进行corruption
48+
apply_corruption(input_image_path, output_folder, corruption_list)
49+
50+
51+
if __name__ == '__main__':
52+
input_folder = "" # 原图像目录
53+
output_folder = "" # 输出图像目录
54+
# 支持的corruption效果
55+
custom_corruption_list = [
56+
'gaussian_noise', 'shot_noise', 'impulse_noise', 'defocus_blur',
57+
'motion_blur', 'zoom_blur', 'snow', 'fog', 'contrast', 'elastic_transform',
58+
'pixelate', 'jpeg_compression', 'speckle_noise', 'spatter'
59+
]
60+
apply_corruption_to_folder(input_folder, output_folder, custom_corruption_list)
61+
62+
```
63+
**注意:** 您需要将 `input_folder` 设置为原始图像的存放目录,将 `output_folder` 设置为输出图像的存放目录。
64+
65+
目前支持的corruption方法有以下几类:gaussian_noise(高斯噪声)、shot_noise(抖动噪声)、impulse_noise(脉冲噪声)、defocus_blur(虚焦模糊)、motion_blur(运动模糊)、zoom_blur(缩放模糊)、snow(雪花)、fog(雾)、contrast(对比度)、elastic_transform(弹性变换)、pixelate(像素化)、jpeg_compression(JPEG压缩)、speckle_noise(斑点噪声)、spatter(飞溅)
66+
67+
## Citation
68+
69+
如果您使用 imagecorruptions 包,请考虑引用:
70+
```
71+
@article{michaelis2019dragon,
72+
title={Benchmarking Robustness in Object Detection: Autonomous Driving when Winter is Coming},
73+
author={Michaelis, Claudio and Mitzkus, Benjamin and Geirhos, Robert and Rusak, Evgenia and Bringmann, Oliver and Ecker, Alexander S. and Bethge, Matthias and Brendel, Wieland},
74+
journal={arXiv preprint arXiv:1907.07484},
75+
year={2019}
76+
}
77+
```

0 commit comments

Comments
 (0)