-
Notifications
You must be signed in to change notification settings - Fork 65
/
Copy pathCCUDADevice.cpp
159 lines (123 loc) · 5.16 KB
/
CCUDADevice.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
// Copyright (C) 2018-2020 - DevSH Graphics Programming Sp. z O.O.
// This file is part of the "Nabla Engine".
// For conditions of distribution and use, see copyright notice in nabla.h
#include "nbl/video/CCUDAHandler.h"
#ifdef _NBL_COMPILE_WITH_CUDA_
namespace nbl::video
{
CCUDADevice::CCUDADevice(core::smart_refctd_ptr<CVulkanConnection>&& _vulkanConnection, IPhysicalDevice* const _vulkanDevice, const E_VIRTUAL_ARCHITECTURE _virtualArchitecture, CUdevice _handle, core::smart_refctd_ptr<CCUDAHandler>&& _handler)
: m_defaultCompileOptions(), m_vulkanConnection(std::move(_vulkanConnection)), m_vulkanDevice(_vulkanDevice), m_virtualArchitecture(_virtualArchitecture), m_handle(_handle), m_handler(std::move(_handler)), m_allocationGranularity{}
{
m_defaultCompileOptions.push_back("--std=c++14");
m_defaultCompileOptions.push_back(virtualArchCompileOption[m_virtualArchitecture]);
m_defaultCompileOptions.push_back("-dc");
m_defaultCompileOptions.push_back("-use_fast_math");
auto& cu = m_handler->getCUDAFunctionTable();
CUresult re = cu.pcuCtxCreate_v2(&m_context, 0, m_handle);
assert(CUDA_SUCCESS == re);
re = cu.pcuCtxSetCurrent(m_context);
assert(CUDA_SUCCESS == re);
for (uint32_t i = 0; i < ARRAYSIZE(m_allocationGranularity); ++i)
{
uint32_t metaData[16] = { 48 };
CUmemAllocationProp prop = {
.type = CU_MEM_ALLOCATION_TYPE_PINNED,
.requestedHandleTypes = ALLOCATION_HANDLE_TYPE,
.location = {.type = static_cast<CUmemLocationType>(i), .id = m_handle },
.win32HandleMetaData = metaData,
};
auto re = cu.pcuMemGetAllocationGranularity(&m_allocationGranularity[i], &prop, CU_MEM_ALLOC_GRANULARITY_MINIMUM);
assert(CUDA_SUCCESS == re);
}
}
CCUDADevice::~CCUDADevice()
{
m_handler->getCUDAFunctionTable().pcuCtxDestroy_v2(m_context);
}
size_t CCUDADevice::roundToGranularity(CUmemLocationType location, size_t size) const
{
return ((size - 1) / m_allocationGranularity[location] + 1) * m_allocationGranularity[location];
}
CUresult CCUDADevice::reserveAdrressAndMapMemory(CUdeviceptr* outPtr, size_t size, size_t alignment, CUmemLocationType location, CUmemGenericAllocationHandle memory)
{
auto& cu = m_handler->getCUDAFunctionTable();
CUdeviceptr ptr = 0;
if (auto err = cu.pcuMemAddressReserve(&ptr, size, alignment, 0, 0); CUDA_SUCCESS != err)
return err;
if (auto err = cu.pcuMemMap(ptr, size, 0, memory, 0); CUDA_SUCCESS != err)
{
cu.pcuMemAddressFree(ptr, size);
return err;
}
CUmemAccessDesc accessDesc = {
.location = { .type = location, .id = m_handle },
.flags = CU_MEM_ACCESS_FLAGS_PROT_READWRITE,
};
if (auto err = cu.pcuMemSetAccess(ptr, size, &accessDesc, 1); CUDA_SUCCESS != err)
{
cu.pcuMemUnmap(ptr, size);
cu.pcuMemAddressFree(ptr, size);
return err;
}
*outPtr = ptr;
return CUDA_SUCCESS;
}
CUresult CCUDADevice::createSharedMemory(
core::smart_refctd_ptr<CCUDASharedMemory>* outMem,
CCUDASharedMemory::SCreationParams&& inParams)
{
if (!outMem)
return CUDA_ERROR_INVALID_VALUE;
CCUDASharedMemory::SCachedCreationParams params = { inParams };
auto& cu = m_handler->getCUDAFunctionTable();
uint32_t metaData[16] = { 48 };
CUmemAllocationProp prop = {
.type = CU_MEM_ALLOCATION_TYPE_PINNED,
.requestedHandleTypes = ALLOCATION_HANDLE_TYPE,
.location = { .type = params.location, .id = m_handle },
.win32HandleMetaData = metaData,
};
params.granularSize = roundToGranularity(params.location, params.size);
CUmemGenericAllocationHandle mem;
if(auto err = cu.pcuMemCreate(&mem, params.granularSize, &prop, 0); CUDA_SUCCESS != err)
return err;
if (auto err = cu.pcuMemExportToShareableHandle(¶ms.osHandle, mem, prop.requestedHandleTypes, 0); CUDA_SUCCESS != err)
{
cu.pcuMemRelease(mem);
return err;
}
if (auto err = reserveAdrressAndMapMemory(¶ms.ptr, params.granularSize, params.alignment, params.location, mem); CUDA_SUCCESS != err)
{
CloseHandle(params.osHandle);
cu.pcuMemRelease(mem);
return err;
}
if (auto err = cu.pcuMemRelease(mem); CUDA_SUCCESS != err)
{
CloseHandle(params.osHandle);
return err;
}
*outMem = core::smart_refctd_ptr<CCUDASharedMemory>(new CCUDASharedMemory(core::smart_refctd_ptr<CCUDADevice>(this), std::move(params)), core::dont_grab);
return CUDA_SUCCESS;
}
CUresult CCUDADevice::importGPUSemaphore(core::smart_refctd_ptr<CCUDASharedSemaphore>* outPtr, ISemaphore* sema)
{
if (!sema || !outPtr)
return CUDA_ERROR_INVALID_VALUE;
auto& cu = m_handler->getCUDAFunctionTable();
auto handleType = sema->getCreationParams().externalHandleTypes;
auto handle = sema->getCreationParams().externalHandle;
if (!handleType.hasFlags(ISemaphore::EHT_OPAQUE_WIN32) || !handle)
return CUDA_ERROR_INVALID_VALUE;
CUDA_EXTERNAL_SEMAPHORE_HANDLE_DESC desc = {
.type = CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_TIMELINE_SEMAPHORE_WIN32,
.handle = {.win32 = {.handle = handle }},
};
CUexternalSemaphore cusema;
if (auto err = cu.pcuImportExternalSemaphore(&cusema, &desc); CUDA_SUCCESS != err)
return err;
*outPtr = core::smart_refctd_ptr<CCUDASharedSemaphore>(new CCUDASharedSemaphore(core::smart_refctd_ptr<CCUDADevice>(this), core::smart_refctd_ptr<ISemaphore>(sema), cusema, handle), core::dont_grab);
return CUDA_SUCCESS;
}
}
#endif // _NBL_COMPILE_WITH_CUDA_