-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdatamodelgenerator.py
260 lines (230 loc) · 10.6 KB
/
datamodelgenerator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
# This file contains the DataModelGenerator class which contains the main logic for the data aware neural architecture search. The DataModelGenerator class is responsible for making the search strategy create new configurations, creating data models according to those configurations, evaluating the data models and update the parameters of the search strategy according to this evaluation. Also saves the pareto frontier of data models.
# Standard Library Imports
import csv
import datetime
import pathlib
import time
# Third Party Imports
import numpy as np
import tensorflow as tf
# Local Imports
import datasetloader
import supernet
from searchstrategy import SearchStrategy
from datamodel import DataModel
class DataModelGenerator:
def __init__(
self,
num_target_classes: int,
loss_function: tf.keras.losses.Loss,
search_strategy: SearchStrategy,
dataset_loader: datasetloader.DatasetLoader,
optimizer: tf.keras.optimizers.Optimizer,
width_dense_layer: int,
num_epochs: int,
batch_size: int,
max_ram_consumption: int,
max_flash_consumption: int,
data_dtype_multiplier: int,
model_dtype_multiplier: int,
supernet_flag: bool,
**data_options,
) -> None:
self.num_target_classes = num_target_classes
self.loss_function = loss_function
self.search_strategy = search_strategy
self.search_space = search_strategy.search_space
self.optimizer = optimizer
self.width_dense_layer = width_dense_layer
self.dataset_loader = dataset_loader
self.test_size = data_options.get("test_size", None)
self.num_epochs = num_epochs
self.batch_size = batch_size
self.data_options = data_options
self.seed = search_strategy.seed
self.max_ram_consumption = max_ram_consumption
self.max_flash_consumption = max_flash_consumption
self.data_dtype_multiplier = data_dtype_multiplier
self.model_dtype_multiplier = model_dtype_multiplier
self.supernet_flag = supernet_flag
def run_data_nas(self) -> list[DataModel]:
pareto_optimal_models = []
previous_data_configuration = None
previous_data = None
save_directory = pathlib.Path("./datamodel_logs/")
save_directory.mkdir(exist_ok=True)
evolution_csv_log_name = (
f"datamodel_logs/{datetime.datetime.now().isoformat()}_evolution.csv"
)
with open(evolution_csv_log_name, "w", newline="") as csvfile:
writer = csv.writer(csvfile)
writer.writerow(
[
"Model Number",
"Data Configuration",
"Model Configuration",
"Accuracy",
"Precision",
"Recall",
"Ram Consumption",
"Flash Consumption",
]
)
# Create a dictionary to store supernets (one for each data configuration)
if self.supernet_flag:
supernets = {}
# To run the search for 23 hours
duration = 23 * 60 * 60
start_time = time.time()
model_number = -1
while True:
model_number += 1
elapsed_time = time.time() - start_time
if elapsed_time > duration:
print("23 hours have passed. Stopping script.")
break
# Print that we are now running a new sample
print("-" * 100)
print(f"Starting model number {model_number}")
# Get configuration from search strategy
print("Generating configuration...")
configuration = self.search_strategy.generate_configuration()
print(
f"Data configuration: {configuration.data_configuration}\nModel configuration: {configuration.model_configuration}"
)
print("Creating data and model from configuration...")
if configuration.data_configuration != previous_data_configuration:
data = DataModel.create_data(
configuration.data_configuration,
dataset_loader=self.dataset_loader,
test_size=self.test_size,
max_ram_consumption=self.max_ram_consumption,
data_dtype_multiplier=self.data_dtype_multiplier,
**self.data_options,
)
elif previous_data != None:
data = previous_data
else:
raise RuntimeError(
"Configuration was same as previous but no previous data was loaded."
)
if data == None:
print("Infeasible data generated. Skipping to next configuration...")
continue
if self.supernet_flag:
if tuple(configuration.data_configuration.items()) in supernets:
supernet_instance = supernets[
tuple(configuration.data_configuration.items())
]
else:
if isinstance(data.X_train, np.ndarray):
raise NotImplementedError(
"Supernet functionality not yet implemented for data as numpy arrays"
)
elif isinstance(data.X_train, tf.data.Dataset):
supernet_instance = supernet.SuperNet(
data=data,
num_target_classes=self.num_target_classes,
model_optimizer=self.optimizer,
model_loss_function=self.loss_function,
)
supernets[tuple(configuration.data_configuration.items())] = (
supernet_instance
)
else:
raise TypeError(
"Generated data was neither a np.ndarray or tf.data.Dataset"
)
model = supernet_instance.sample_subnet(
**configuration.model_configuration
)
else:
if isinstance(data.X_train, np.ndarray):
data_shape = data.X_train[0].shape
elif isinstance(data.X_train, tf.data.Dataset):
data_shape = data.X_train.element_spec[0].shape[1:]
else:
raise TypeError(
"Generated data was neither a np.ndarray or tf.data.Dataset"
)
model = DataModel.create_model(
model_configuration=configuration.model_configuration,
data_shape=data_shape,
num_target_classes=self.num_target_classes,
model_optimizer=self.optimizer,
model_loss_function=self.loss_function,
model_width_dense_layer=self.width_dense_layer,
max_ram_consumption=self.max_ram_consumption,
max_flash_consumption=self.max_flash_consumption,
data_dtype_multiplier=self.data_dtype_multiplier,
model_dtype_multiplier=self.model_dtype_multiplier,
)
if model == None:
print("Infeasible model generated. Skipping to next configuration...")
continue
data_model = DataModel(
configuration=configuration,
data=data,
model=model,
data_dtype_multiplier=self.data_dtype_multiplier,
model_dtype_multiplier=self.model_dtype_multiplier,
model_number=model_number,
)
print("Evaluating performance of data and model")
# Evaluate performance of data and model
data_model.evaluate_data_model(self.num_epochs, self.batch_size)
print(
f"Model{model_number} metrics:\nAccuracy: {data_model.accuracy}\nPrecision: {data_model.precision}\nRecall: {data_model.recall}\nRam Consumption (bytes): {data_model.ram_consumption}\nFlash Consumption (bytes): {data_model.flash_consumption}"
)
print("Updating parameters of the search strategy...")
# Update search strategy parameters
self.search_strategy.update_parameters(data_model)
print("Freeing loaded data and model to reduce memory consumption...")
previous_data_configuration = data_model.configuration.data_configuration
previous_data = data_model.data
data_model.free_data_model()
print("Saving DataModel and metrics in logs...")
self._save_to_csv(evolution_csv_log_name, model_number, data_model)
print("Saving DataModel for pareto front calculation")
# Save the models that are pareto optimal
pareto_optimal_models.append(data_model)
pareto_optimal_models = self._prune_non_pareto_optimal_models(
pareto_optimal_models
)
return pareto_optimal_models
def _save_to_csv(
self, csv_log_name: str, model_number: int, data_model: DataModel
) -> None:
with open(csv_log_name, "a", newline="") as csvfile:
writer = csv.writer(csvfile)
writer.writerow(
[
model_number,
data_model.configuration.data_configuration,
data_model.configuration.model_configuration,
data_model.accuracy,
data_model.precision,
data_model.recall,
data_model.ram_consumption,
data_model.flash_consumption,
]
)
# https://stackoverflow.com/questions/32791911/fast-calculation-of-pareto-front-in-python
@staticmethod
def _prune_non_pareto_optimal_models(
iterative_pareto_optimal_models: list[DataModel],
) -> list[DataModel]:
iterative_pareto_optimal_models_numpy = np.array(
iterative_pareto_optimal_models
)
is_optimal = np.ones(iterative_pareto_optimal_models_numpy.shape[0], dtype=bool)
for i, model in enumerate(iterative_pareto_optimal_models_numpy):
if is_optimal[i]:
is_optimal[is_optimal] = np.array(
[
x.better_data_model(model)
for x in iterative_pareto_optimal_models_numpy[is_optimal]
]
)
is_optimal[i] = True
return list(iterative_pareto_optimal_models_numpy[is_optimal])