|
| 1 | +# -*- coding: utf-8 -*- |
| 2 | + |
| 3 | +import os |
| 4 | +import numpy as np |
| 5 | +import string |
| 6 | +from collections import Counter |
| 7 | +import pandas as pd |
| 8 | +from tqdm import tqdm |
| 9 | +import random |
| 10 | +import time |
| 11 | +import pickle |
| 12 | +from utils import log_time_delta |
| 13 | +from tqdm import tqdm |
| 14 | +from dataloader import Dataset |
| 15 | + |
| 16 | +class Alphabet(dict): |
| 17 | + def __init__(self, start_feature_id = 1, alphabet_type="text"): |
| 18 | + self.fid = start_feature_id |
| 19 | + if alphabet_type=="text": |
| 20 | + self.add('[PADDING]') |
| 21 | + self.add('[UNK]') |
| 22 | + self.add('[END]') |
| 23 | + self.unknow_token = self.get('[UNK]') |
| 24 | + self.end_token = self.get('[END]') |
| 25 | + self.padding_token = self.get('[PADDING]') |
| 26 | + |
| 27 | + def add(self, item): |
| 28 | + idx = self.get(item, None) |
| 29 | + if idx is None: |
| 30 | + idx = self.fid |
| 31 | + self[item] = idx |
| 32 | + # self[idx] = item |
| 33 | + self.fid += 1 |
| 34 | + return idx |
| 35 | + |
| 36 | + def addAll(self,words): |
| 37 | + for word in words: |
| 38 | + self.add(word) |
| 39 | + |
| 40 | + def dump(self, fname,path="temp"): |
| 41 | + if not os.path.exists(path): |
| 42 | + os.mkdir(path) |
| 43 | + with open(os.path.join(path,fname), "w") as out: |
| 44 | + for k in sorted(self.keys()): |
| 45 | + out.write("{}\t{}\n".format(k, self[k])) |
| 46 | + |
| 47 | +class BucketIterator(object): |
| 48 | + def __init__(self,data,opt=None,batch_size=2,shuffle=True): |
| 49 | + self.shuffle=shuffle |
| 50 | + self.data=data |
| 51 | + self.batch_size=batch_size |
| 52 | + if opt is not None: |
| 53 | + self.setup(opt) |
| 54 | + def setup(self,opt): |
| 55 | + self.data=opt.data |
| 56 | + self.batch_size=opt.batch_size |
| 57 | + self.shuffle=opt.__dict__.get("shuffle",self.shuffle) |
| 58 | + def __iter__(self): |
| 59 | + if self.shuffle: |
| 60 | + self.data = self.data.sample(frac=1).reset_index(drop=True) |
| 61 | + batch_nums = int(len(self.data)/self.batch_size) |
| 62 | + for i in range(batch_nums): |
| 63 | + yield self.data[i*self.batch_size:(i+1)*self.batch_size] |
| 64 | + yield self.data[-1*self.batch_size:] |
| 65 | + |
| 66 | + |
| 67 | +@log_time_delta |
| 68 | +def getSubVectors(vectors,vocab,dim): |
| 69 | + embedding = np.zeros((len(vocab),dim)) |
| 70 | + count = 1 |
| 71 | + for word in vocab: |
| 72 | + if word in vectors: |
| 73 | + count += 1 |
| 74 | + embedding[vocab[word]]= vectors[word] |
| 75 | + else: |
| 76 | + embedding[vocab[word]]= np.random.uniform(-0.5,+0.5,dim)#vectors['[UNKNOW]'] #.tolist() |
| 77 | + print( 'word in embedding',count) |
| 78 | + return embedding |
| 79 | + |
| 80 | +@log_time_delta |
| 81 | +def load_text_vec(alphabet,filename="",embedding_size=-1): |
| 82 | + vectors = {} |
| 83 | + with open(filename,encoding='utf-8') as f: |
| 84 | + for line in tqdm(f): |
| 85 | + items = line.strip().split(' ') |
| 86 | + if len(items) == 2: |
| 87 | + vocab_size, embedding_size= items[0],items[1] |
| 88 | + print( 'embedding_size',embedding_size) |
| 89 | + print( 'vocab_size in pretrained embedding',vocab_size) |
| 90 | + else: |
| 91 | + word = items[0] |
| 92 | + if word in alphabet: |
| 93 | + vectors[word] = items[1:] |
| 94 | + print( 'words need to be found ',len(alphabet)) |
| 95 | + print( 'words found in wor2vec embedding ',len(vectors.keys())) |
| 96 | + |
| 97 | + if embedding_size==-1: |
| 98 | + embedding_size = len(vectors[list(vectors.keys())[0]]) |
| 99 | + return vectors,embedding_size |
| 100 | + |
| 101 | +def getEmbeddingFile(name): |
| 102 | + #"glove" "w2v" |
| 103 | + |
| 104 | + return "D:\dataset\glove\glove.6B.300d.txt" |
| 105 | + |
| 106 | +def getDataSet(dataset): |
| 107 | + |
| 108 | + data_dir = ".data/clean/demo" |
| 109 | + files=[os.path.join(data_dir,data_name) for data_name in ['train.txt','test.txt','dev.txt']] |
| 110 | + |
| 111 | + |
| 112 | + return files |
| 113 | + |
| 114 | + |
| 115 | +def loadData(opt): |
| 116 | + datas = [] |
| 117 | + |
| 118 | + alphabet = Alphabet(start_feature_id = 0) |
| 119 | + label_alphabet= Alphabet(start_feature_id = 0,alphabet_type="label") |
| 120 | + for filename in getDataSet(opt.dataset): |
| 121 | + df = pd.read_csv(filename,header = None,sep="\t",names=["text","label"]).fillna('0') |
| 122 | + df["text"]= df["text"].str.lower().str.split() |
| 123 | + datas.append(df) |
| 124 | + |
| 125 | + df=pd.concat(datas) |
| 126 | + |
| 127 | + from functools import reduce |
| 128 | + word_set=reduce(lambda x,y : set(x)|set(y),df["text"]) |
| 129 | + alphabet.addAll(word_set) |
| 130 | + label_set = set(df["label"]) |
| 131 | + label_alphabet.addAll(label_set) |
| 132 | + |
| 133 | + if opt.max_seq_len==-1: |
| 134 | + opt.max_seq_len = df.apply(lambda row: row["text"].__len__(),axis=1).max() |
| 135 | + |
| 136 | + for data in datas: |
| 137 | + data["text"]= data["text"].apply(lambda text: [alphabet.get(word,alphabet.unknow_token) for word in text] + [alphabet.padding_token] *int(opt.max_seq_len-len(text)) ) |
| 138 | + data["label"]=data["label"].apply(lambda text: label_alphabet.get(text)) |
| 139 | + |
| 140 | + |
| 141 | + glove_file = getEmbeddingFile(opt.__dict__.get("embedding","glove_6b_300")) |
| 142 | + loaded_vectors,embedding_size = load_text_vec(alphabet,glove_file) |
| 143 | + vocab = [v for k,v in alphabet.items()] |
| 144 | + vectors = getSubVectors(loaded_vectors,vocab,embedding_size) |
| 145 | + |
| 146 | + opt.label_size= len(alphabet) |
| 147 | + opt.vocab_size = len(label_alphabet) |
| 148 | + opt.embedding_dim= embedding_size |
| 149 | + opt.embeddings = vectors |
| 150 | + |
| 151 | + alphabet.dump(opt.dataset+".alphabet") |
| 152 | + return map(BucketIterator,datas) #map(lambda x:BucketIterator(x),datas) |
| 153 | + |
| 154 | + |
| 155 | +if __name__ =="__main__": |
| 156 | + import opts |
| 157 | + opt = opts.parse_opt() |
| 158 | + opt.max_seq_len=-1 |
| 159 | + import dataloader |
| 160 | + dataset= dataloader.getDataset(opt) |
| 161 | +# datas=loadData(opt) |
| 162 | + |
| 163 | + |
0 commit comments