-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy path1339-maximum-product-of-splitted-binary-tree.js
47 lines (43 loc) · 1.31 KB
/
1339-maximum-product-of-splitted-binary-tree.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
/**
* 1339. Maximum Product of Splitted Binary Tree
* https://leetcode.com/problems/maximum-product-of-splitted-binary-tree/
* Difficulty: Medium
*
* Given the root of a binary tree, split the binary tree into two subtrees by removing one edge
* such that the product of the sums of the subtrees is maximized.
*
* Return the maximum product of the sums of the two subtrees. Since the answer may be too large,
* return it modulo 109 + 7.
*
* Note that you need to maximize the answer before taking the mod and not after taking it.
*/
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {number}
*/
var maxProduct = function(root) {
const sums = [];
const MOD = 1e9 + 7;
const total = calculateSum(root);
let maxProd = 0;
for (const sum of sums) {
maxProd = Math.max(maxProd, sum * (total - sum));
}
return maxProd % MOD;
function calculateSum(node) {
if (!node) return 0;
const leftSum = calculateSum(node.left);
const rightSum = calculateSum(node.right);
const totalSum = node.val + leftSum + rightSum;
sums.push(totalSum);
return totalSum;
}
};