-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy path1494-parallel-courses-ii.js
74 lines (66 loc) · 2.23 KB
/
1494-parallel-courses-ii.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
/**
* 1494. Parallel Courses II
* https://leetcode.com/problems/parallel-courses-ii/
* Difficulty: Hard
*
* You are given an integer n, which indicates that there are n courses labeled from 1 to n. You are
* also given an array relations where relations[i] = [prevCoursei, nextCoursei], representing a
* prerequisite relationship between course prevCoursei and course nextCoursei: course prevCoursei
* has to be taken before course nextCoursei. Also, you are given the integer k.
*
* In one semester, you can take at most k courses as long as you have taken all the prerequisites
* in the previous semesters for the courses you are taking.
*
* Return the minimum number of semesters needed to take all courses. The testcases will be
* generated such that it is possible to take every course.
*/
/**
* @param {number} n
* @param {number[][]} relations
* @param {number} k
* @return {number}
*/
var minNumberOfSemesters = function(n, relations, k) {
const prerequisites = new Array(n).fill(0);
for (const [prev, next] of relations) {
prerequisites[next - 1] |= 1 << (prev - 1);
}
const cache = new Array(1 << n).fill(-1);
return findMinSemesters(0);
function findMinSemesters(courses) {
if (courses === (1 << n) - 1) return 0;
if (cache[courses] !== -1) return cache[courses];
let available = 0;
for (let i = 0; i < n; i++) {
if (!(courses & (1 << i)) && (courses & prerequisites[i]) === prerequisites[i]) {
available |= 1 << i;
}
}
let minSemesters = n + 1;
const combinations = function(pos, count, selected) {
if (count === 0 || pos === n) {
if (selected) {
minSemesters = Math.min(
minSemesters,
1 + findMinSemesters(courses | selected)
);
}
return;
}
if (!(available & (1 << pos))) return combinations(pos + 1, count, selected);
combinations(pos + 1, count - 1, selected | (1 << pos));
combinations(pos + 1, count, selected);
};
combinations(0, Math.min(k, bitCount(available)), 0);
cache[courses] = minSemesters;
return minSemesters;
}
function bitCount(num) {
let count = 0;
while (num) {
count += num & 1;
num >>= 1;
}
return count;
}
};