-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy path1569-number-of-ways-to-reorder-array-to-get-same-bst.js
65 lines (56 loc) · 2.16 KB
/
1569-number-of-ways-to-reorder-array-to-get-same-bst.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
/**
* 1569. Number of Ways to Reorder Array to Get Same BST
* https://leetcode.com/problems/number-of-ways-to-reorder-array-to-get-same-bst/
* Difficulty: Hard
*
* Given an array nums that represents a permutation of integers from 1 to n. We are going to
* construct a binary search tree (BST) by inserting the elements of nums in order into an
* initially empty BST. Find the number of different ways to reorder nums so that the constructed
* BST is identical to that formed from the original array nums.
*
* For example, given nums = [2,1,3], we will have 2 as the root, 1 as a left child, and 3 as a
* right child. The array [2,3,1] also yields the same BST but [3,2,1] yields a different BST.
*
* Return the number of ways to reorder nums such that the BST formed is identical to the original
* BST formed from nums.
*
* Since the answer may be very large, return it modulo 109 + 7.
*/
/**
* @param {number[]} nums
* @return {number}
*/
var numOfWays = function(nums) {
const MOD = BigInt(10 ** 9 + 7);
const factorialCache = Array(nums.length).fill(null);
factorialCache[0] = 1n;
function calculatePermutations(arr) {
if (arr.length < 3) return 1n;
const root = arr[0];
const leftSubtree = [];
const rightSubtree = [];
for (let i = 1; i < arr.length; i++) {
if (arr[i] < root) {
leftSubtree.push(arr[i]);
} else {
rightSubtree.push(arr[i]);
}
}
const leftPermutations = calculatePermutations(leftSubtree);
const rightPermutations = calculatePermutations(rightSubtree);
const totalNodes = BigInt(arr.length - 1);
const leftNodes = BigInt(leftSubtree.length);
return (helper(totalNodes, leftNodes) * leftPermutations * rightPermutations) % MOD;
}
function helper(n, k) {
factorialCache[n] = computeFactorial(n);
factorialCache[n - k] = computeFactorial(n - k);
factorialCache[k] = computeFactorial(k);
return factorialCache[n] / (factorialCache[k] * factorialCache[n - k]);
}
function computeFactorial(n) {
if (factorialCache[n]) return factorialCache[n];
return n * computeFactorial(n - 1n);
}
return Number((calculatePermutations(nums) - 1n) % MOD);
};