-
Notifications
You must be signed in to change notification settings - Fork 60
/
Copy pathpartitions.jl
513 lines (447 loc) · 13.3 KB
/
partitions.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
#Partitions
export
integer_partitions,
ncpartitions,
partitions,
prevprod
#nextprod,
#integer partitions
struct IntegerPartitions{T <: Integer}
n::T
end
Base.length(p::IntegerPartitions) = npartitions(Int(p.n))
Base.eltype(p::IntegerPartitions{T}) where T <: Integer = Vector{T}
function _spread!(rem::T, m::T, k::Int, part::Vector{T}) where T <: Integer
# spread rem as m,m,m,... starting from part[k+1]
# return the last index
while rem >= m
part[k += 1] = m
rem -= m
end
if rem > 0
part[k += 1] = rem
end
return k
end
@inline function Base.iterate(p::IntegerPartitions{T}) where T <: Integer
p.n < 0 && return
part = Vector{T}(undef, p.n)
k = _spread!(p.n, max(p.n, one(T)), 0, part)
return (part[1:k], (k, part))
end
@inline function Base.iterate(p::IntegerPartitions{T}, state::Tuple{Int, Vector{T}}) where T <: Integer
k, part = state
k == p.n && return
# find the last entry that's not 1 and lower it by 1,
# then spread the remaining value
rem = zero(T)
while part[k] == 1
rem += part[k]
k -= 1
end
part[k] -= 1
k = _spread!(rem + one(T), part[k], k, part)
return (part[1:k], (k, part))
end
"""
partitions(n)
Generate all integer arrays that sum to `n`. Because the number of partitions can be very
large, this function returns an iterator object. Use `collect(partitions(n))` to get an
array of all partitions. The number of partitions to generate can be efficiently computed
using `length(partitions(n))`.
"""
partitions(n::Integer) = IntegerPartitions(n)
let _npartitions = Dict{Int,Int}()
global npartitions
function npartitions(n::Int)
if n < 0
0
elseif n < 2
1
elseif (np = get(_npartitions, n, 0)) > 0
np
else
np = 0
sgn = 1
for k = 1:n
np += sgn * (npartitions(n - (k*(3k-1)) >> 1) + npartitions(n - (k*(3k+1)) >> 1))
sgn = -sgn
end
_npartitions[n] = np
end
end
end
# Algorithm H from TAoCP 7.2.1.4
# Partition n into m parts
# in colex order (lexicographic by reflected sequence)
struct FixedPartitions
n::Int
m::Int
end
Base.length(f::FixedPartitions) = npartitions(f.n,f.m)
Base.eltype(f::FixedPartitions) = Vector{Int}
"""
partitions(n, m)
Generate all arrays of `m` integers that sum to `n`. Because the number of partitions can
be very large, this function returns an iterator object. Use `collect(partitions(n, m))` to
get an array of all partitions. The number of partitions to generate can be efficiently
computed using `length(partitions(n, m))`.
"""
partitions(n::Integer, m::Integer) =
n >= 1 && m >= 1 ?
FixedPartitions(n, m) :
throw(DomainError((n, m), "n and m must be positive"))
function Base.iterate(f::FixedPartitions, s::Vector{Int} = Int[])
f.m <= f.n || return
if !isempty(s)
(f.m == 1 || s[1]-1 <= s[end]) && return
end
xs = nextfixedpartition(f.n,f.m,s)
(xs, xs)
end
function nextfixedpartition(n, m, bs)
as = copy(bs)
if isempty(as)
# First iteration
as = ones(Int, m); as[1] = n - m + 1
elseif as[2] < as[1]-1
# Most common iteration
as[1] -= 1
as[2] += 1
else
# Iterate
j = 0
s = as[1]+as[2]-1
for jj = 3:m # TODO: use `for outer j = ...` on 0.7
j = jj
as[jj] < as[1]-1 && break
s += as[jj]
end
x = as[j] += 1
for k = j-1:-1:2
as[k] = x
s -= x
end
as[1] = s
end
return as
end
let _nipartitions = Dict{Tuple{Int,Int},Int}()
global npartitions
function npartitions(n::Int, m::Int)
if n < m || m == 0
0
elseif n == m
1
elseif (np = get(_nipartitions, (n,m), 0)) > 0
np
else
_nipartitions[(n, m)] = npartitions(n-1, m-1) + npartitions(n-m, m)
end
end
end
# Algorithm H from TAoCP 7.2.1.5
# Set partitions
struct SetPartitions{T<:AbstractVector}
s::T
end
Base.length(p::SetPartitions) = nsetpartitions(length(p.s))
Base.eltype(p::SetPartitions) = Vector{Vector{eltype(p.s)}}
"""
partitions(s::AbstractVector)
Generate all set partitions of the elements of an array `s`, represented as arrays of
arrays. Because the number of partitions can be very large, this function returns an
iterator object. Use `collect(partitions(s))` to get an array of all partitions. The
number of partitions to generate can be efficiently computed using
`length(partitions(s))`.
"""
partitions(s::AbstractVector) = SetPartitions(s)
function Base.iterate(p::SetPartitions)
n = length(p.s)
iterate(p, (zeros(Int32, n), ones(Int32, n-1), n, 1))
end
function Base.iterate(p::SetPartitions, s)
s[1][1] > 0 && return
nextsetpartition(p.s, s...)
end
function nextsetpartition(s::AbstractVector, a, b, n, m)
function makeparts(s, a, m)
temp = [similar(s, 0) for k = 0:m]
for i = 1:n
push!(temp[a[i]+1], s[i])
end
filter!(!isempty, temp)
end
if isempty(s); return ([s], (eltype(a)[1], eltype(b)[], n, 1)); end
part = makeparts(s,a,m)
if a[end] != m
a[end] += 1
else
j = 0
for jj = n-1:-1:1
j = jj
a[jj] == b[jj] || break
end
a[j] += 1
m = Int(b[j]) + (a[j] == b[j])
for k = j+1:n-1
a[k] = 0
b[k] = m
end
a[end] = 0
end
return (part, (a,b,n,m))
end
let _nsetpartitions = Dict{Int,Int}()
global nsetpartitions
function nsetpartitions(n::Int)
if n < 0
0
elseif n < 2
1
elseif (wn = get(_nsetpartitions, n, 0)) > 0
wn
else
wn = 0
for k = 0:n-1
wn += binomial(n-1,k)*nsetpartitions(n-1-k)
end
_nsetpartitions[n] = wn
end
end
end
struct FixedSetPartitions{T<:AbstractVector}
s::T
m::Int
end
Base.length(p::FixedSetPartitions) = nfixedsetpartitions(length(p.s),p.m)
Base.eltype(p::FixedSetPartitions) = Vector{Vector{eltype(p.s)}}
"""
partitions(s::AbstractVector, m::Int)
Generate all set partitions of the elements of an array `s` into exactly `m` subsets,
represented as arrays of arrays. Because the number of partitions can be very large,
this function returns an iterator object. Use `collect(partitions(s, m))` to get
an array of all partitions. The number of partitions into `m` subsets is equal to the
Stirling number of the second kind, and can be efficiently computed using
`length(partitions(s, m))`.
"""
partitions(s::AbstractVector, m::Int) =
length(s) >= 1 && m >= 1 ?
FixedSetPartitions(s, m) :
throw(DomainError((length(s), m), "length(s) and m must be positive"))
function Base.iterate(p::FixedSetPartitions)
n = length(p.s)
m = p.m
state = m <= n ? (vcat(ones(Int, n-m),1:m), vcat(1:1,n-m+2:n), n) : (Int[], Int[], n)
# state consists of:
# vector a of length n describing to which partition every element of s belongs
# vector b of length n describing the first index b[i] that belongs to partition i
# integer n
iterate(p, state)
end
function Base.iterate(p::FixedSetPartitions, s)
(isempty(s[1]) || s[1][1] > 1) && return
nextfixedsetpartition(p.s,p.m, s...)
end
function nextfixedsetpartition(s::AbstractVector, m, a, b, n)
function makeparts(s, a)
local part = [ similar(s,0) for k = 1:m ]
for i = 1:n
push!(part[a[i]], s[i])
end
return part
end
part = makeparts(s,a)
if m == 1
a[1] = 2
return (part, (a, b, n))
end
if a[end] != m
a[end] += 1
else
j = k = 0
for jj = n-1:-1:1
j = jj
if a[j] < m && b[a[j]+1] < j
break
end
end
if j > 1
a[j] += 1
for p = j+1:n
if b[a[p]] != p
a[p] = 1
end
end
else
for kk = m:-1:2
k = kk
if b[k-1] < b[k] - 1
break
end
end
b[k] -= 1
b[k+1:m] = n-m+k+1:n
a[1:n] .= 1
a[b] = 1:m
end
end
return (part, (a,b,n))
end
function nfixedsetpartitions(n::Int, m::Int)
numpart = 0
for k = 0:m
numpart += (-1)^(m-k) * binomial(m, k) * (k^n)
end
numpart = div(numpart, factorial(m))
return numpart
end
# TODO: Base.DSP is no longer a thing in Julia 0.7
#This function is still defined in Base because it is being used by Base.DSP
#"""
#Next integer not less than `n` that can be written as $\prod k_i^{p_i}$ for integers $p_1$, $p_2$, etc.
#
#For a list of integers i1, i2, i3, find the smallest
# i1^n1 * i2^n2 * i3^n3 >= x
#for integer n1, n2, n3
#"""
#function nextprod(a::Vector{Int}, x)
# if x > typemax(Int)
# throw(ArgumentError("unsafe for x > typemax(Int), got $x"))
# end
# k = length(a)
# v = ones(Int, k) # current value of each counter
# mx = [nextpow(ai,x) for ai in a] # maximum value of each counter
# v[1] = mx[1] # start at first case that is >= x
# p::widen(Int) = mx[1] # initial value of product in this case
# best = p
# icarry = 1
#
# while v[end] < mx[end]
# if p >= x
# best = p < best ? p : best # keep the best found yet
# carrytest = true
# while carrytest
# p = div(p, v[icarry])
# v[icarry] = 1
# icarry += 1
# p *= a[icarry]
# v[icarry] *= a[icarry]
# carrytest = v[icarry] > mx[icarry] && icarry < k
# end
# if p < x
# icarry = 1
# end
# else
# while p < x
# p *= a[1]
# v[1] *= a[1]
# end
# end
# end
# best = mx[end] < best ? mx[end] : best
# return Int(best) # could overflow, but best to have predictable return type
#end
"""
prevprod(a::Vector{Int}, x)
Previous integer not greater than `x` that can be written as ``\\prod k_i^{p_i}`` for
integers ``p_1``, ``p_2``, etc.
For integers ``i_1``, ``i_2``, ``i_3``, this is equivalent to finding the largest ``x``
such that
```math
i_1^n_1 i_2^n_2 i_3^n_3 \\leq x
```
for integers ``n_1``, ``n_2``, ``n_3``.
"""
function prevprod(a::Vector{Int}, x)
if x > typemax(Int)
throw(ArgumentError("unsafe for x > typemax(Int), got $x"))
end
k = length(a)
v = ones(Int, k) # current value of each counter
mx = [nextpow(ai,x) for ai in a] # allow each counter to exceed p (sentinel)
first = Int(prevpow(a[1], x)) # start at best case in first factor
v[1] = first
p::widen(Int) = first
best = p
icarry = 1
while v[end] < mx[end]
while p <= x
best = p > best ? p : best
p *= a[1]
v[1] *= a[1]
end
if p > x
carrytest = true
while carrytest
p = div(p, v[icarry])
v[icarry] = 1
icarry += 1
p *= a[icarry]
v[icarry] *= a[icarry]
carrytest = v[icarry] > mx[icarry] && icarry < k
end
if p <= x
icarry = 1
end
end
end
best = x >= p > best ? p : best
return Int(best)
end
"""
integer_partitions(n)
List the partitions of the integer `n`.
!!! note
The order of the resulting array is consistent with that produced by the computational
discrete algebra software GAP.
"""
function integer_partitions(n::Integer; warn=true)
if warn
@warn "`integer_partitions` is slow and should be considered as deprecated. Use `collect(partitions(n))` instead."
end
if n < 0
throw(DomainError(n, "n must be nonnegative"))
elseif n == 0
return Vector{Int}[]
elseif n == 1
return Vector{Int}[[1]]
end
list = Vector{Int}[]
for p in integer_partitions(n-1, warn=false)
push!(list, [p; 1])
if length(p) == 1 || p[end] < p[end-1]
push!(list, [p[1:end-1]; p[end]+1])
end
end
list
end
#Noncrossing partitions
const _cmp = cmp
#Produces noncrossing partitions of length n
function ncpartitions(n::Int)
partitions = Vector{Vector{Int}}[]
_ncpart!(1,n,n,Vector{Int}[], partitions)
partitions
end
function _ncpart!(a::Int, b::Int, nn::Int, x::Vector, partitions::Vector)
n = b - a + 1
for k = 1:n, root in CoolLexCombinations(n, k)
root .+= a - 1
#Abort if construction is out of lex order
!isempty(x) && _cmp(x[end], root) == 1 && return
#Save if we've filled all the holes
sofar = Vector{Int}[x..., root]
ssofaru = sort!(union(sofar...))
if length(ssofaru) == nn && ssofaru == collect(1:nn)
push!(partitions, sofar)
return
end
#otherwise patch all remaining holes
blob = [ssofaru; nn + 1]
for l = 1:length(blob)-1
ap, bp = blob[l] + 1, blob[l+1] - 1
ap <= bp && _ncpart!(ap, bp, nn, sofar, partitions)
end
end
end