Here the Special Functions are listed according to the structure of NIST Digital Library of Mathematical Functions.
Function | Description |
---|---|
[gamma(z) ](@ref SpecialFunctions.gamma(::Number)) |
gamma function \Gamma(z) |
[loggamma(x) ](@ref SpecialFunctions.loggamma(::Number)) |
accurate log(gamma(x)) for large x |
[logabsgamma(x) ](@ref SpecialFunctions.logabsgamma) |
accurate log(abs(gamma(x))) for large x |
[logfactorial(x) ](@ref SpecialFunctions.logfactorial) |
accurate log(factorial(x)) for large x ; same as loggamma(x+1) for x > 1 , zero otherwise |
[digamma(x) ](@ref SpecialFunctions.digamma) |
digamma function (i.e. the derivative of loggamma at x ) |
[invdigamma(x) ](@ref SpecialFunctions.invdigamma) |
invdigamma function (i.e. inverse of digamma function at x using fixed-point iteration algorithm) |
[trigamma(x) ](@ref SpecialFunctions.trigamma) |
trigamma function (i.e the logarithmic second derivative of gamma at x ) |
[polygamma(m,x) ](@ref SpecialFunctions.polygamma) |
polygamma function (i.e the (m+1)-th derivative of the loggamma function at x ) |
[gamma(a,z) ](@ref SpecialFunctions.gamma(::Number,::Number)) |
upper incomplete gamma function \Gamma(a,z) |
[loggamma(a,z) ](@ref SpecialFunctions.loggamma(::Number,::Number)) |
accurate log(gamma(a,x)) for large arguments |
[gamma_inc(a,x,IND) ](@ref SpecialFunctions.gamma_inc) |
incomplete gamma function ratio P(a,x) and Q(a,x) (i.e evaluates P(a,x) and Q(a,x)for accuracy specified by IND and returns tuple (p,q)) |
[beta_inc(a,b,x,y) ](@ref SpecialFunctions.beta_inc) |
incomplete beta function ratio Ix(a,b) and Iy(a,b) (i.e evaluates Ix(a,b) and Iy(a,b) and returns tuple (p,q)) |
[gamma_inc_inv(a,p,q) ](@ref SpecialFunctions.gamma_inc_inv) |
inverse of incomplete gamma function ratio P(a,x) and Q(a,x) (i.e evaluates x given P(a,x)=p and Q(a,x)=q |
[beta(x,y) ](@ref SpecialFunctions.beta) |
beta function at x,y |
[logbeta(x,y) ](@ref SpecialFunctions.logbeta) |
accurate log(beta(x,y)) for large x or y |
[logabsbeta(x,y) ](@ref SpecialFunctions.logabsbeta) |
accurate log(abs(beta(x,y))) for large x or y |
[logabsbinomial(x,y) ](@ref SpecialFunctions.logabsbinomial) |
accurate log(abs(binomial(n,k))) for large n and k near n/2 |
[binomial(x,y) ](@ref Base.binomial) |
generalized binomial coefficient { x \choose y} for x,y \in \mathbb{C} |
Function | Description |
---|---|
[expint(ν, z) ](@ref SpecialFunctions.expint) |
exponential integral \operatorname{E}_\nu(z) |
[expinti(x) ](@ref SpecialFunctions.expinti) |
exponential integral \operatorname{Ei}(x) |
[expintx(x) ](@ref SpecialFunctions.expintx) |
exponential integral e^z \operatorname{E}_\nu(z) |
[sinint(x) ](@ref SpecialFunctions.sinint) |
sine integral \operatorname{Si}(x) |
[cosint(x) ](@ref SpecialFunctions.cosint) |
cosine integral \operatorname{Ci}(x) |
Function | Description |
---|---|
[erf(x) ](@ref SpecialFunctions.erf) |
error function at x |
[erf(x,y) ](@ref SpecialFunctions.erf) |
accurate version of \operatorname{erf}(y) - \operatorname{erf}(x) |
[erfc(x) ](@ref SpecialFunctions.erfc) |
complementary error function, i.e. the accurate version of 1-\operatorname{erf}(x) for large x |
[erfcinv(x) ](@ref SpecialFunctions.erfcinv) |
inverse function to [erfc() ](@ref SpecialFunctions.erfc) |
[erfcx(x) ](@ref SpecialFunctions.erfcx) |
scaled complementary error function, i.e. accurate e^{x^2} \operatorname{erfc}(x) for large x |
[logerfc(x) ](@ref SpecialFunctions.logerfc) |
log of the complementary error function, i.e. accurate \operatorname{ln}(\operatorname{erfc}(x)) for large x |
[logerfcx(x) ](@ref SpecialFunctions.logerfcx) |
log of the scaled complementary error function, i.e. accurate \operatorname{ln}(\operatorname{erfcx}(x)) for large negative x |
[erfi(x) ](@ref SpecialFunctions.erfi) |
imaginary error function defined as -i \operatorname{erf}(ix) |
[erfinv(x) ](@ref SpecialFunctions.erfinv) |
inverse function to [erf() ](@ref SpecialFunctions.erf) |
[dawson(x) ](@ref SpecialFunctions.dawson) |
scaled imaginary error function, a.k.a. Dawson function, i.e. accurate \frac{\sqrt{\pi}}{2} e^{-x^2} \operatorname{erfi}(x) for large x |
Function | Description |
---|---|
[airyai(z) ](@ref SpecialFunctions.airyai) |
Airy Ai function at z |
[airyaiprime(z) ](@ref SpecialFunctions.airyaiprime) |
derivative of the Airy Ai function at z |
[airybi(z) ](@ref SpecialFunctions.airybi) |
Airy Bi function at z |
[airybiprime(z) ](@ref SpecialFunctions.airybiprime) |
derivative of the Airy Bi function at z |
[airyaix(z) ](@ref SpecialFunctions.airyaix), [airyaiprimex(z) ](@ref SpecialFunctions.airyaiprimex), [airybix(z) ](@ref SpecialFunctions.airybix), [airybiprimex(z) ](@ref SpecialFunctions.airybiprimex) |
scaled Airy Ai function and k th derivatives at z |
Function | Description |
---|---|
[besselj(nu,z) ](@ref SpecialFunctions.besselj) |
Bessel function of the first kind of order nu at z |
[besselj0(z) ](@ref SpecialFunctions.besselj0) |
besselj(0,z) |
[besselj1(z) ](@ref SpecialFunctions.besselj1) |
besselj(1,z) |
[besseljx(nu,z) ](@ref SpecialFunctions.besseljx) |
scaled Bessel function of the first kind of order nu at z |
[sphericalbesselj(nu,z) ](@ref SpecialFunctions.sphericalbesselj) |
Spherical Bessel function of the first kind of order nu at z |
[bessely(nu,z) ](@ref SpecialFunctions.bessely) |
Bessel function of the second kind of order nu at z |
[bessely0(z) ](@ref SpecialFunctions.bessely0) |
bessely(0,z) |
[bessely1(z) ](@ref SpecialFunctions.bessely1) |
bessely(1,z) |
[besselyx(nu,z) ](@ref SpecialFunctions.besselyx) |
scaled Bessel function of the second kind of order nu at z |
[sphericalbessely(nu,z) ](@ref SpecialFunctions.sphericalbessely) |
Spherical Bessel function of the second kind of order nu at z |
[besselh(nu,k,z) ](@ref SpecialFunctions.besselh) |
Bessel function of the third kind (a.k.a. Hankel function) of order nu at z ; k must be either 1 or 2 |
[hankelh1(nu,z) ](@ref SpecialFunctions.hankelh1) |
besselh(nu, 1, z) |
[hankelh1x(nu,z) ](@ref SpecialFunctions.hankelh1x) |
scaled besselh(nu, 1, z) |
[hankelh2(nu,z) ](@ref SpecialFunctions.hankelh2) |
besselh(nu, 2, z) |
[hankelh2x(nu,z) ](@ref SpecialFunctions.hankelh2x) |
scaled besselh(nu, 2, z) |
[besseli(nu,z) ](@ref SpecialFunctions.besseli) |
modified Bessel function of the first kind of order nu at z |
[besselix(nu,z) ](@ref SpecialFunctions.besselix) |
scaled modified Bessel function of the first kind of order nu at z |
[besselk(nu,z) ](@ref SpecialFunctions.besselk) |
modified Bessel function of the second kind of order nu at z |
[besselkx(nu,z) ](@ref SpecialFunctions.besselkx) |
scaled modified Bessel function of the second kind of order nu at z |
[jinc(x) ](@ref SpecialFunctions.jinc) |
scaled Bessel function of the first kind divided by x . A.k.a. sombrero or besinc |
Function | Description |
---|---|
[ellipk(m) ](@ref SpecialFunctions.ellipk) |
complete elliptic integral of 1st kind K(m) |
[ellipe(m) ](@ref SpecialFunctions.ellipe) |
complete elliptic integral of 2nd kind E(m) |
Function | Description |
---|---|
[eta(x) ](@ref SpecialFunctions.eta) |
Dirichlet eta function at x |
[zeta(x) ](@ref SpecialFunctions.zeta) |
Riemann zeta function at x |