You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
<li><code>smoothen</code> activates smoothening of the boundary of the patch that alters the existing patch. When smoothening occurs, fluids of the two patches are mixed in the region of the boundary. For instance, in the aforementioned case of the cylindrical patch immersed in the rectangular patch, smoothening occurs when <code>patch_icpp(2)smoothen = 'T'</code>. <code>smooth_coeff</code> controls the thickness of the region of smoothening (sharpness of the mixture region). The default value of <code>smooth_coeff</code> is unity. The region of smoothening is thickened with decreasing the value. Optimal choice of the value of <code>smooth_coeff</code> is case-dependent and left to the user.</li>
361
-
<li><code>patch_icpp(j)alpha(i)</code>, <code>patch_icpp(j)alpha_rho(i)</code>, <code>patch_icpp(j)pres</code>, and <code>patch_icpp(j)vel(i)</code> define for $j$-th patch the void fraction of <code>fluid(i)</code>, partial density of <code>fluid(i)</code>, the pressure, and the velocity in the $i$-th coordinate direction. These physical parameters must be consistent with fluid material's parameters defined in the next subsection. See also <code>adv_alphan</code> in table Simulation Algorithm Parameters.</li>
361
+
<li><code>patch_icpp(j)alpha(i)</code>, <code>patch_icpp(j)alpha_rho(i)</code>, <code>patch_icpp(j)pres</code>, and <code>patch_icpp(j)vel(i)</code> define for $j$-th patch the void fraction of <code>fluid(i)</code>, partial density of <code>fluid(i)</code>, the pressure, and the velocity in the $i$-th coordinate direction. These physical parameters must be consistent with fluid material's parameters defined in the next subsection.</li>
362
362
<li><code>model%scale</code>, <code>model%rotate</code> and <code>model%translate</code> define how the model should be transformed to domain-space by first scaling by <code>model%scale</code>, then rotating about the Z, X, and Y axes (using <code>model%rotate</code>), and finally translating by <code>model%translate</code>.</li>
<tdclass="markdownTableBodyRight"><code>alt_soundspeed</code> * </td><tdclass="markdownTableBodyCenter">Logical </td><tdclass="markdownTableBodyLeft">Alternate sound speed and $K \nabla \cdot u$ for 5-equation model </td></tr>
451
451
<trclass="markdownTableRowEven">
452
-
<tdclass="markdownTableBodyRight"><code>adv_alphan</code></td><tdclass="markdownTableBodyCenter">Logical </td><tdclass="markdownTableBodyLeft">Equations for all $N$ volume fractions (instead of $N-1$) </td></tr>
453
-
<trclass="markdownTableRowOdd">
454
452
<tdclass="markdownTableBodyRight"><code>adv_n</code></td><tdclass="markdownTableBodyCenter">Logical </td><tdclass="markdownTableBodyLeft">Solving directly for the number density (in the method of classes) and compute void fraction from the number density </td></tr>
<tdclass="markdownTableBodyRight"><code>time_stepper</code></td><tdclass="markdownTableBodyCenter">Integer</td><tdclass="markdownTableBodyLeft">Runge–Kutta order [1-3]</td></tr>
<tdclass="markdownTableBodyRight"><code>adap_dt</code></td><tdclass="markdownTableBodyCenter">Logical</td><tdclass="markdownTableBodyLeft">Strang splitting scheme with adaptive time stepping</td></tr>
458
+
<tdclass="markdownTableBodyRight"><code>time_stepper</code></td><tdclass="markdownTableBodyCenter">Integer</td><tdclass="markdownTableBodyLeft">Runge–Kutta order [1-3]</td></tr>
463
459
<trclass="markdownTableRowEven">
464
-
<tdclass="markdownTableBodyRight"><code>weno_order</code></td><tdclass="markdownTableBodyCenter">Integer</td><tdclass="markdownTableBodyLeft">WENO order [1,3,5]</td></tr>
460
+
<tdclass="markdownTableBodyRight"><code>adap_dt</code></td><tdclass="markdownTableBodyCenter">Logical</td><tdclass="markdownTableBodyLeft">Strang splitting scheme with adaptive time stepping</td></tr>
465
461
<trclass="markdownTableRowOdd">
466
-
<tdclass="markdownTableBodyRight"><code>weno_eps</code></td><tdclass="markdownTableBodyCenter">Real</td><tdclass="markdownTableBodyLeft">WENO perturbation (avoid division by zero)</td></tr>
462
+
<tdclass="markdownTableBodyRight"><code>weno_order</code></td><tdclass="markdownTableBodyCenter">Integer</td><tdclass="markdownTableBodyLeft">WENO order [1,3,5]</td></tr>
467
463
<trclass="markdownTableRowEven">
468
-
<tdclass="markdownTableBodyRight"><code>mapped_weno</code></td><tdclass="markdownTableBodyCenter">Logical</td><tdclass="markdownTableBodyLeft">WENO-M (WENO with mapping of nonlinear weights) </td></tr>
464
+
<tdclass="markdownTableBodyRight"><code>weno_eps</code></td><tdclass="markdownTableBodyCenter">Real</td><tdclass="markdownTableBodyLeft">WENO perturbation (avoid division by zero) </td></tr>
<tdclass="markdownTableBodyRight"><code>mapped_weno</code></td><tdclass="markdownTableBodyCenter">Logical </td><tdclass="markdownTableBodyLeft">WENO-M (WENO with mapping of nonlinear weights)</td></tr>
<tdclass="markdownTableBodyRight"><code>teno_CT</code></td><tdclass="markdownTableBodyCenter">Real</td><tdclass="markdownTableBodyLeft">TENO threshold for smoothness detection</td></tr>
<tdclass="markdownTableBodyRight"><code>null_weights</code></td><tdclass="markdownTableBodyCenter">Logical</td><tdclass="markdownTableBodyLeft">Null WENO weights at boundaries</td></tr>
472
+
<tdclass="markdownTableBodyRight"><code>teno_CT</code></td><tdclass="markdownTableBodyCenter">Real</td><tdclass="markdownTableBodyLeft">TENO threshold for smoothness detection</td></tr>
<tdclass="markdownTableBodyRight"><code>weno_Re_flux</code></td><tdclass="markdownTableBodyCenter">Logical</td><tdclass="markdownTableBodyLeft">Compute velocity gradient using scaler divergence theorem</td></tr>
484
+
<tdclass="markdownTableBodyRight"><code>wave_speeds</code></td><tdclass="markdownTableBodyCenter">Integer</td><tdclass="markdownTableBodyLeft">Wave-speed estimation: [1] Direct (Batten et al. 1997); [2] Pressure-velocity* (Toro 1999)</td></tr>
489
485
<trclass="markdownTableRowOdd">
486
+
<tdclass="markdownTableBodyRight"><code>weno_Re_flux</code></td><tdclass="markdownTableBodyCenter">Logical </td><tdclass="markdownTableBodyLeft">Compute velocity gradient using scaler divergence theorem </td></tr>
487
+
<trclass="markdownTableRowEven">
490
488
<tdclass="markdownTableBodyRight"><code>weno_avg</code></td><tdclass="markdownTableBodyCenter">Logical </td><tdclass="markdownTableBodyLeft">Arithmetic mean of left and right, WENO-reconstructed, cell-boundary values </td></tr>
<li><code>bc_[x,y,z]%ve[1,2,3]</code> specifies the velocity in the (x,1), (y,2), (z,3) direction applied to <code>bc_[x,y,z]%beg</code> when using <code>bc_[x,y,z]%end = -16</code>. Tangential velocities require viscosity, <code>weno_avg = T</code>, and <code>bc_[x,y,z]%end = 16</code> to work properly. Normal velocities require <code>bc_[x,y,z]%end = -15</code> or <code>\bc_[x,y,z]%end = -16</code> to work properly.</li>
502
500
<li><code>model_eqns</code> specifies the choice of the multi-component model that is used to formulate the dynamics of the flow using integers from 1 through 3. <code>model_eqns = 1</code>, <code>2</code>, and <code>3</code> correspond to $\Gamma$-$\Pi_\infty$ model (<ahref="references.md#Johnsen08">Johnsen, 2008</a>), 5-equation model (<ahref="references.md#Allaire02">Allaire et al., 2002</a>), and 6-equation model (<ahref="references.md#Saurel09">Saurel et al., 2009</a>), respectively. The difference of the two models is assessed by (<ahref="references.md#Schmidmayer19">Schmidmayer et al., 2019</a>). Note that some code parameters are only compatible with 5-equation model.</li>
503
501
<li><code>alt_soundspeed</code> activates the source term in the advection equations for the volume fractions, $K\nabla\cdot \underline{u}$, that regularizes the speed of sound in the mixture region when the 5-equation model is used. The effect and use of the source term are assessed by <ahref="references.md#Schmidmayer19">Schmidmayer et al., 2019</a>.</li>
504
-
<li><code>adv_alphan</code> activates the advection equations of all the components of fluid. If this parameter is set false, the void fraction of $N$-th component is computed as the residual of the void fraction of the other components at each cell:</li>
505
-
</ul>
506
-
<p>$$ \alpha_N=1-\sum^{N-1}_{i=1} \alpha_i $$</p>
507
-
<p>where $\alpha_i$ is the void fraction of $i$-th component. When a single-component flow is simulated, it requires that <code>adv_alphan = 'T'</code>.</p>
508
-
<ul>
509
502
<li><code>adv_n</code> activates the direct computation of number density by the Riemann solver instead of computing number density from the void fraction in the method of classes.</li>
510
503
<li><code>mpp_lim</code> activates correction of solutions to avoid a negative void fraction of each component in each grid cell, such that $\alpha_i>\varepsilon$ is satisfied at each time step.</li>
511
504
<li><code>mixture_err</code> activates correction of solutions to avoid imaginary speed of sound at each grid cell.</li>
<trclass="memdesc:abebd95d9d0271fbda40f47f75a2d829b"><tdclass="mdescLeft"> </td><tdclass="mdescRight">Advection of the last volume fraction. <br/></td></tr>
<trclass="memdesc:abebd95d9d0271fbda40f47f75a2d829b"><tdclass="mdescLeft"> </td><tdclass="mdescRight">Advection of the last volume fraction. <br/></td></tr>
0 commit comments