You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
<p>V. A. Titarev, E. F. Toro, Finite-volume WENO schemes for three-dimensional conservation laws, Journal of Computational Physics 201 (1) (2004) 238–260. </p>
<p>Bezgin, D. A., & Buhendwa A. B., & Adams N. A. (2022). JAX-FLUIDS: A fully-differentiable high-order computational fluid dynamics solver for compressible two-phase flows. arXiv:2203.13760 </p>
<p>Ghia, U., & Ghia, K. N., & Shin, C. T. (1982). High-re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics, 48, 387-411 </p>
<p>P. D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation, Communications on pure and applied mathematics 7 (1) (1954) 159–193. </p>
<p>G. B. Skinner and G. H. Ringrose, “Ignition Delays of a Hydrogen—Oxygen—Argon Mixture at Relatively Low Temperatures”, J. Chem. Phys., vol. 42, no. 6, pp. 2190–2192, Mar. 1965. Accessed: Oct. 13, 2024. [Online]. Available: <ahref="https://doi.org/10.1063/1.1696266">https://doi.org/10.1063/1.1696266</a>. </p>
<p>Hillewaert, K. (2013). TestCase C3.5 - DNS of the transition of the Taylor-Green vortex, Re=1600 - Introduction and result summary. 2nd International Workshop on high-order methods for CFD. </p>
236
241
</blockquote>
237
-
<h2><aclass="anchor" id="autotoc_md62"></a>
242
+
<h2><aclass="anchor" id="autotoc_md65"></a>
238
243
Final Condition</h2>
239
244
<p>This figure shows the isosurface with zero q-criterion.</p>
<p>P. J. Martínez Ferrer, R. Buttay, G. Lehnasch, and A. Mura, “A detailed verification procedure for compressible reactive multicomponent Navier–Stokes solvers”, Computers & Fluids, vol. 89, pp. 88–110, Jan. 2014. Accessed: Oct. 13, 2024. [Online]. Available: <ahref="https://doi.org/10.1016/j.compfluid.2013.10.014">https://doi.org/10.1016/j.compfluid.2013.10.014</a></p>
<p>The <ahref="case.py"><b>Scaling</b></a> case can exercise both weak- and strong-scaling. It adjusts itself depending on the number of requested ranks.</p>
255
260
<p>This directory also contains a collection of scripts used to test strong-scaling on OLCF Frontier. They required modifying MFC to collect some metrics but are meant to serve as a reference to users wishing to run similar experiments.</p>
256
-
<h2><aclass="anchor" id="autotoc_md67"></a>
261
+
<h2><aclass="anchor" id="autotoc_md70"></a>
257
262
Weak Scaling</h2>
258
263
<p>Pass <code>--scaling weak</code>. The <code>--memory</code> option controls (approximately) how much memory each rank should use, in Gigabytes. The number of cells in each dimension is then adjusted according to the number of requested ranks and an approximation for the relation between cell count and memory usage. The problem size increases linearly with the number of ranks.</p>
259
-
<h2><aclass="anchor" id="autotoc_md68"></a>
264
+
<h2><aclass="anchor" id="autotoc_md71"></a>
260
265
Strong Scaling</h2>
261
266
<p>Pass <code>--scaling strong</code>. The <code>--memory</code> option controls (approximately) how much memory should be used in total during simulation, across all ranks, in Gigabytes. The problem size remains constant as the number of ranks increases.</p>
262
-
<h2><aclass="anchor" id="autotoc_md69"></a>
267
+
<h2><aclass="anchor" id="autotoc_md72"></a>
263
268
Example</h2>
264
269
<p>For example, to run a weak-scaling test that uses ~4GB of GPU memory per rank on 8 2-rank nodes with case optimization, one could:</p>
265
270
<divclass="fragment"><divclass="line">./mfc.sh run examples/scaling/case.py -t pre_process simulation \</div>
</div><!-- fragment --><h1><aclass="anchor" id="autotoc_md70"></a>
273
+
</div><!-- fragment --><h1><aclass="anchor" id="autotoc_md73"></a>
269
274
2D Riemann Test (2D)</h1>
270
275
<p>Reference: </p><blockquoteclass="doxtable">
271
276
<p>Chamarthi, A., & Hoffmann, N., & Nishikawa, H., & Frankel S. (2023). Implicit gradients based conservative numerical scheme for compressible flows. arXiv:2110.05461 </p>
<p>P. J. Martínez Ferrer, R. Buttay, G. Lehnasch, and A. Mura, “A detailed verification procedure for compressible reactive multicomponent Navier–Stokes solvers”, Computers & Fluids, vol. 89, pp. 88–110, Jan. 2014. Accessed: Oct. 13, 2024. [Online]. Available: <ahref="https://doi.org/10.1016/j.compfluid.2013.10.014">https://doi.org/10.1016/j.compfluid.2013.10.014</a></p>
285
290
</blockquote>
286
291
<blockquoteclass="doxtable">
287
292
<p>H. Chen, C. Si, Y. Wu, H. Hu, and Y. Zhu, “Numerical investigation of the effect of equivalence ratio on the propagation characteristics and performance of rotating detonation engine”, Int. J. Hydrogen Energy, Mar. 2023. Accessed: Oct. 13, 2024. [Online]. Available: <ahref="https://doi.org/10.1016/j.ijhydene.2023.03.190">https://doi.org/10.1016/j.ijhydene.2023.03.190</a></p>
0 commit comments