|
| 1 | +import sys |
| 2 | +import numpy |
| 3 | + |
| 4 | +import torch |
| 5 | +import torch.nn as nn |
| 6 | + |
| 7 | +import torch.nn.functional as F |
| 8 | + |
| 9 | +from collections import OrderedDict |
| 10 | + |
| 11 | +import nltk |
| 12 | +from nltk.tokenize import word_tokenize |
| 13 | + |
| 14 | +import logging |
| 15 | + |
| 16 | +logFormatter = logging.Formatter("%(asctime)s [%(threadName)-12.12s] [%(levelname)-5.5s] %(message)s") |
| 17 | +consoleHandler = logging.StreamHandler(sys.stdout) |
| 18 | +consoleHandler.setFormatter(logFormatter) |
| 19 | +logger = logging.getLogger() |
| 20 | +logger.addHandler(consoleHandler) |
| 21 | +logger.setLevel(logging.NOTSET) |
| 22 | + |
| 23 | + |
| 24 | + |
| 25 | + |
| 26 | +class SkipThoughts(nn.Module): |
| 27 | + def __init__(self, dirStr: str, dictionary: dict, fixedEmb: bool = False, normalized: bool = True): |
| 28 | + super(SkipThoughts, self).__init__() |
| 29 | + |
| 30 | + self.dirStr = dirStr |
| 31 | + self.fixed_emb = fixedEmb |
| 32 | + self.normalized = normalized |
| 33 | + self.dictionary = dictionary |
| 34 | + |
| 35 | + def preprocess(self, x): |
| 36 | + X = [] |
| 37 | + sent_detector = nltk.data.load('tokenizers/punkt/english.pickle') |
| 38 | + for t in x: |
| 39 | + sents = sent_detector.tokenize(t) |
| 40 | + result = '' |
| 41 | + for s in sents: |
| 42 | + tokens = word_tokenize(s) |
| 43 | + result += ' ' + ' '.join(tokens) |
| 44 | + X.append(result) |
| 45 | + |
| 46 | + wordIdx = [[self.dictionary[word] for word in s.split()] for s in X] |
| 47 | + |
| 48 | + tensorWordIdx = torch.zeros(len(wordIdx), max([len(i) for i in wordIdx])) # needs numpy base for large batches |
| 49 | + for i in range(len(tensorWordIdx)): |
| 50 | + tensorWordIdx[i,:len(wordIdx[i])] = torch.tensor(wordIdx[i], dtype=torch.int64) |
| 51 | + |
| 52 | + return tensorWordIdx.long() |
| 53 | + |
| 54 | + def loadEmbedding(self, dictionary: dict, filePath: str): |
| 55 | + logging.info(f"Loading table: {filePath}") |
| 56 | + embedding = nn.Embedding(num_embeddings=len(self.dictionary) + 1, |
| 57 | + embedding_dim=620, |
| 58 | + padding_idx=0, |
| 59 | + sparse=False) |
| 60 | + |
| 61 | + parameters = numpy.load(filePath, encoding='latin1', allow_pickle=True) |
| 62 | + weights = torch.zeros(len(dictionary) + 1, 620) |
| 63 | + for i in range(len(weights) - 1): |
| 64 | + weights[i + 1] = torch.from_numpy(parameters[i]) |
| 65 | + embedding.load_state_dict({'weight': weights}) |
| 66 | + return embedding |
| 67 | + |
| 68 | + |
| 69 | +class UniSkipThoughts(SkipThoughts): |
| 70 | + def __init__(self, dirStr: str, dictionary: dict, dropout: float = 0, fixedEmb: bool = False, normalized: bool = True): |
| 71 | + super(UniSkipThoughts, self).__init__(dirStr, dictionary, fixedEmb, normalized) |
| 72 | + self.dropout = dropout |
| 73 | + |
| 74 | + self.embedding = self.loadEmbedding(self.dictionary, dirStr + '/utable.npy') |
| 75 | + |
| 76 | + if fixedEmb: |
| 77 | + self.embedding.weight.requires_grad = False |
| 78 | + |
| 79 | + self.gru = nn.GRU(input_size=620, |
| 80 | + hidden_size=2400, |
| 81 | + batch_first=True, |
| 82 | + dropout=self.dropout) |
| 83 | + self.loadModel(dirStr + "/uni_skip.npz") |
| 84 | + |
| 85 | + def selectResult(self, x, lengths): |
| 86 | + X = torch.zeros(x.size(0), 2400) |
| 87 | + for i in range(len(x)): |
| 88 | + X[i] = x[i][lengths[i]-1] |
| 89 | + return X |
| 90 | + |
| 91 | + def loadModel(self, modelPath: str): |
| 92 | + logging.info(f"Loading model: {modelPath}") |
| 93 | + params = numpy.load(modelPath, encoding='latin1', allow_pickle=True) |
| 94 | + states = OrderedDict() |
| 95 | + states['bias_ih_l0'] = torch.zeros(7200) |
| 96 | + states['bias_hh_l0'] = torch.zeros(7200) |
| 97 | + states['weight_ih_l0'] = torch.zeros(7200, 620) |
| 98 | + states['weight_hh_l0'] = torch.zeros(7200, 2400) |
| 99 | + states['weight_ih_l0'][:4800] = torch.from_numpy(params['encoder_W']).t() |
| 100 | + states['weight_ih_l0'][4800:] = torch.from_numpy(params['encoder_Wx']).t() |
| 101 | + states['bias_ih_l0'][:4800] = torch.from_numpy(params['encoder_b']) |
| 102 | + states['bias_ih_l0'][4800:] = torch.from_numpy(params['encoder_bx']) |
| 103 | + states['weight_hh_l0'][:4800] = torch.from_numpy(params['encoder_U']).t() |
| 104 | + states['weight_hh_l0'][4800:] = torch.from_numpy(params['encoder_Ux']).t() |
| 105 | + self.gru.load_state_dict(states) |
| 106 | + |
| 107 | + def forward(self, input): |
| 108 | + lengths = [len(s.split(' ')) for s in input] |
| 109 | + input = self.preprocess(input) |
| 110 | + x = self.embedding(input) |
| 111 | + y, hn = self.gru(x) |
| 112 | + y = self.selectResult(y, lengths) |
| 113 | + if self.normalized: |
| 114 | + y = torch.nn.functional.normalize(y) |
| 115 | + return y |
| 116 | + |
| 117 | + |
| 118 | +class BiSkipThoughts(SkipThoughts): |
| 119 | + |
| 120 | + def __init__(self, dirStr: str, dictionary: dict, dropout: float = 0, fixedEmb: bool = False, normalized: bool = True): |
| 121 | + super(BiSkipThoughts, self).__init__(dirStr, dictionary, fixedEmb, normalized) |
| 122 | + self.dropout = dropout |
| 123 | + |
| 124 | + self.embedding = self.loadEmbedding(self.dictionary, dirStr + '/btable.npy') |
| 125 | + |
| 126 | + if fixedEmb: |
| 127 | + self.embedding.weight.requires_grad = False |
| 128 | + |
| 129 | + self.gru = nn.GRU(input_size=620, |
| 130 | + hidden_size=1200, |
| 131 | + batch_first=True, |
| 132 | + dropout=self.dropout, |
| 133 | + bidirectional=True) |
| 134 | + |
| 135 | + self.loadModel(dirStr + "/bi_skip.npz") |
| 136 | + |
| 137 | + |
| 138 | + def loadModel(self, modelPath: str): |
| 139 | + logging.info(f"Loading model: {modelPath}") |
| 140 | + params = numpy.load(modelPath, encoding='latin1', allow_pickle=True) |
| 141 | + states = OrderedDict() |
| 142 | + states['bias_ih_l0'] = torch.zeros(3600) |
| 143 | + states['bias_hh_l0'] = torch.zeros(3600) # must stay equal to 0 |
| 144 | + states['weight_ih_l0'] = torch.zeros(3600, 620) |
| 145 | + states['weight_hh_l0'] = torch.zeros(3600, 1200) |
| 146 | + |
| 147 | + states['bias_ih_l0_reverse'] = torch.zeros(3600) |
| 148 | + states['bias_hh_l0_reverse'] = torch.zeros(3600) # must stay equal to 0 |
| 149 | + states['weight_ih_l0_reverse'] = torch.zeros(3600, 620) |
| 150 | + states['weight_hh_l0_reverse'] = torch.zeros(3600, 1200) |
| 151 | + |
| 152 | + states['weight_ih_l0'][:2400] = torch.from_numpy(params['encoder_W']).t() |
| 153 | + states['weight_ih_l0'][2400:] = torch.from_numpy(params['encoder_Wx']).t() |
| 154 | + states['bias_ih_l0'][:2400] = torch.from_numpy(params['encoder_b']) |
| 155 | + states['bias_ih_l0'][2400:] = torch.from_numpy(params['encoder_bx']) |
| 156 | + states['weight_hh_l0'][:2400] = torch.from_numpy(params['encoder_U']).t() |
| 157 | + states['weight_hh_l0'][2400:] = torch.from_numpy(params['encoder_Ux']).t() |
| 158 | + |
| 159 | + states['weight_ih_l0_reverse'][:2400] = torch.from_numpy(params['encoder_r_W']).t() |
| 160 | + states['weight_ih_l0_reverse'][2400:] = torch.from_numpy(params['encoder_r_Wx']).t() |
| 161 | + states['bias_ih_l0_reverse'][:2400] = torch.from_numpy(params['encoder_r_b']) |
| 162 | + states['bias_ih_l0_reverse'][2400:] = torch.from_numpy(params['encoder_r_bx']) |
| 163 | + states['weight_hh_l0_reverse'][:2400] = torch.from_numpy(params['encoder_r_U']).t() |
| 164 | + states['weight_hh_l0_reverse'][2400:] = torch.from_numpy(params['encoder_r_Ux']).t() |
| 165 | + self.gru.load_state_dict(states) |
| 166 | + |
| 167 | + def forward(self, input): |
| 168 | + lengths = [len(s.split(' ')) for s in input] |
| 169 | + |
| 170 | + x = self.preprocess(input) |
| 171 | + x = self.embedding(x) |
| 172 | + |
| 173 | + x = nn.utils.rnn.pack_padded_sequence(x, lengths, batch_first=True, enforce_sorted=False) |
| 174 | + |
| 175 | + y, hn = self.gru(x) |
| 176 | + |
| 177 | + hn = hn.transpose(0, 1).contiguous() |
| 178 | + hn = hn.view(len(input), 2 * hn.size(2)) |
| 179 | + |
| 180 | + if self.normalized: |
| 181 | + hn = torch.nn.functional.normalize(hn) |
| 182 | + |
| 183 | + return hn |
| 184 | + |
| 185 | + |
| 186 | +class Encoder(object): |
| 187 | + def __init__(self, dirStr: str, dropout: float = 0, fixedEmb: bool = False, normalized: bool = True): |
| 188 | + self.dirStr = dirStr |
| 189 | + self.dropout = dropout |
| 190 | + self.fixedEmb = fixedEmb |
| 191 | + self.normalized = normalized |
| 192 | + self.dictionary = self.loadDictionary(dirStr) |
| 193 | + self.uniSkip = UniSkipThoughts(dirStr, self.dictionary, dropout, fixedEmb, normalized) |
| 194 | + self.biSkip = BiSkipThoughts(dirStr, self.dictionary, dropout, fixedEmb, normalized) |
| 195 | + |
| 196 | + def loadDictionary(self, dirStr: str): |
| 197 | + logging.info("Loading dictionary") |
| 198 | + with open(dirStr + '/dictionary.txt', 'r', encoding="utf8") as file: |
| 199 | + words = file.readlines() |
| 200 | + |
| 201 | + dictionary = {} |
| 202 | + for idx, word in enumerate(words): |
| 203 | + dictionary[word.strip()] = idx + 1 |
| 204 | + return dictionary |
| 205 | + |
| 206 | + def encode(self, input: list): |
| 207 | + uFeatures = self.uniSkip(input) |
| 208 | + bFeatures = self.biSkip(input) |
| 209 | + return torch.cat([uFeatures, bFeatures], 1) |
| 210 | + |
| 211 | +if __name__ == '__main__': |
| 212 | + |
| 213 | + dirStr = 'models' |
| 214 | + |
| 215 | + encoder = Encoder(dirStr) |
| 216 | + |
| 217 | + test = ["Hey, how are you?", "This sentence is a lie"] |
| 218 | + |
| 219 | + result = encoder.encode(test) |
| 220 | + |
| 221 | + print(result) |
| 222 | + |
| 223 | + |
| 224 | + |
| 225 | + |
0 commit comments