|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "<h3>Using Twitter API to gather tweets based on speciifc hashtags and its sentiment" |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "code", |
| 12 | + "execution_count": 2, |
| 13 | + "metadata": {}, |
| 14 | + "outputs": [], |
| 15 | + "source": [ |
| 16 | + "from textblob import TextBlob\n", |
| 17 | + "from twython import Twython\n", |
| 18 | + "import json\n", |
| 19 | + "import pandas as pd\n", |
| 20 | + "import re\n", |
| 21 | + "\n", |
| 22 | + "def clean_tweet(tweet):\n", |
| 23 | + " return ' '.join(re.sub(\"(@[A-Za-z0-9]+)|([^0-9A-Za-z \\t])|(\\w+:\\/\\/\\S+)\", \" \", tweet).split())\n", |
| 24 | + "\n", |
| 25 | + "def sentiment(tweet):\n", |
| 26 | + " ''' \n", |
| 27 | + " Utility function to classify sentiment of passed tweet \n", |
| 28 | + " using textblob's sentiment method \n", |
| 29 | + " '''\n", |
| 30 | + " # create TextBlob object of passed tweet text \n", |
| 31 | + " analysis = TextBlob(clean_tweet(tweet)) \n", |
| 32 | + " # set sentiment \n", |
| 33 | + " if analysis.sentiment.polarity > 0: \n", |
| 34 | + " return 1\n", |
| 35 | + " #elif analysis.sentiment.polarity == 0: \n", |
| 36 | + " #return 'neutral' \n", |
| 37 | + " return 0" |
| 38 | + ] |
| 39 | + }, |
| 40 | + { |
| 41 | + "cell_type": "markdown", |
| 42 | + "metadata": {}, |
| 43 | + "source": [ |
| 44 | + "### Note: You cannot get tweets unless you have access to `Twitter API`\n", |
| 45 | + "<h3>Check the format below in order to use your credentials" |
| 46 | + ] |
| 47 | + }, |
| 48 | + { |
| 49 | + "cell_type": "raw", |
| 50 | + "metadata": {}, |
| 51 | + "source": [ |
| 52 | + "{\n", |
| 53 | + " \"consumer_key\" : \"\",\n", |
| 54 | + " \"consumer_secret\" : \"\",\n", |
| 55 | + " \"access_token\" : \"\",\n", |
| 56 | + " \"access_token_secret\" : \"\"\n", |
| 57 | + "}" |
| 58 | + ] |
| 59 | + }, |
| 60 | + { |
| 61 | + "cell_type": "markdown", |
| 62 | + "metadata": {}, |
| 63 | + "source": [ |
| 64 | + "#### Define your credentials in `twitter_credentials.json` file based on the keys you get from API <u>BEFORE EXECUTING THIS PART</u>" |
| 65 | + ] |
| 66 | + }, |
| 67 | + { |
| 68 | + "cell_type": "code", |
| 69 | + "execution_count": 3, |
| 70 | + "metadata": {}, |
| 71 | + "outputs": [], |
| 72 | + "source": [ |
| 73 | + "# Load credentials from json file\n", |
| 74 | + "with open(\"twitter_credentials.json\", \"r\") as file:\n", |
| 75 | + " creds = json.load(file)\n", |
| 76 | + "\n", |
| 77 | + "# Instantiate an object\n", |
| 78 | + "python_tweets = Twython(creds['consumer_key'], creds['consumer_secret']) # ,creds['access_token'],creds['access_token_secret']\n", |
| 79 | + "# ['airpods','iphone12','MacBookPro16']" |
| 80 | + ] |
| 81 | + }, |
| 82 | + { |
| 83 | + "cell_type": "markdown", |
| 84 | + "metadata": {}, |
| 85 | + "source": [ |
| 86 | + "#### Customizing queries with hashtags, timestamp, language and quantity\n", |
| 87 | + "In this project the purpose was to get a fair quantitity of each `label` (positive and negative meaning tweets) and `hashtags` (#airpods, #iphone12, #macbookpro16)" |
| 88 | + ] |
| 89 | + }, |
| 90 | + { |
| 91 | + "cell_type": "code", |
| 92 | + "execution_count": 7, |
| 93 | + "metadata": {}, |
| 94 | + "outputs": [ |
| 95 | + { |
| 96 | + "data": { |
| 97 | + "text/html": [ |
| 98 | + "<div>\n", |
| 99 | + "<style scoped>\n", |
| 100 | + " .dataframe tbody tr th:only-of-type {\n", |
| 101 | + " vertical-align: middle;\n", |
| 102 | + " }\n", |
| 103 | + "\n", |
| 104 | + " .dataframe tbody tr th {\n", |
| 105 | + " vertical-align: top;\n", |
| 106 | + " }\n", |
| 107 | + "\n", |
| 108 | + " .dataframe thead th {\n", |
| 109 | + " text-align: right;\n", |
| 110 | + " }\n", |
| 111 | + "</style>\n", |
| 112 | + "<table border=\"1\" class=\"dataframe\">\n", |
| 113 | + " <thead>\n", |
| 114 | + " <tr style=\"text-align: right;\">\n", |
| 115 | + " <th></th>\n", |
| 116 | + " <th>id</th>\n", |
| 117 | + " <th>text</th>\n", |
| 118 | + " <th>label</th>\n", |
| 119 | + " </tr>\n", |
| 120 | + " </thead>\n", |
| 121 | + " <tbody>\n", |
| 122 | + " <tr>\n", |
| 123 | + " <th>0</th>\n", |
| 124 | + " <td>1244295516927688712</td>\n", |
| 125 | + " <td>@SAfmnews The tweets in here are full of spark...</td>\n", |
| 126 | + " <td>1</td>\n", |
| 127 | + " </tr>\n", |
| 128 | + " <tr>\n", |
| 129 | + " <th>1</th>\n", |
| 130 | + " <td>1244171436907999232</td>\n", |
| 131 | + " <td>@CHINWENDUH @Ikelectron @oblomart @I_amDozie H...</td>\n", |
| 132 | + " <td>1</td>\n", |
| 133 | + " </tr>\n", |
| 134 | + " <tr>\n", |
| 135 | + " <th>2</th>\n", |
| 136 | + " <td>1244043940736704517</td>\n", |
| 137 | + " <td>@JuliaHB1 l am old,but I understand that this ...</td>\n", |
| 138 | + " <td>1</td>\n", |
| 139 | + " </tr>\n", |
| 140 | + " <tr>\n", |
| 141 | + " <th>3</th>\n", |
| 142 | + " <td>1243605527663448068</td>\n", |
| 143 | + " <td>@pril_98 @TwoDaeFourEight @lifelessmachine @sp...</td>\n", |
| 144 | + " <td>1</td>\n", |
| 145 | + " </tr>\n", |
| 146 | + " <tr>\n", |
| 147 | + " <th>4</th>\n", |
| 148 | + " <td>1243259668174008321</td>\n", |
| 149 | + " <td>someone is already 21 yrs old but can't even m...</td>\n", |
| 150 | + " <td>1</td>\n", |
| 151 | + " </tr>\n", |
| 152 | + " <tr>\n", |
| 153 | + " <th>5</th>\n", |
| 154 | + " <td>1242642040103424000</td>\n", |
| 155 | + " <td>With kiwis using their devices more &amp; scam...</td>\n", |
| 156 | + " <td>1</td>\n", |
| 157 | + " </tr>\n", |
| 158 | + " <tr>\n", |
| 159 | + " <th>6</th>\n", |
| 160 | + " <td>1242567113262256128</td>\n", |
| 161 | + " <td>@digiwonk @nora3000 Hi big fan of @spark and @...</td>\n", |
| 162 | + " <td>1</td>\n", |
| 163 | + " </tr>\n", |
| 164 | + " <tr>\n", |
| 165 | + " <th>7</th>\n", |
| 166 | + " <td>1242452796659523584</td>\n", |
| 167 | + " <td>Let there be light, let there be light\\nI spar...</td>\n", |
| 168 | + " <td>1</td>\n", |
| 169 | + " </tr>\n", |
| 170 | + " <tr>\n", |
| 171 | + " <th>8</th>\n", |
| 172 | + " <td>1242189629819887616</td>\n", |
| 173 | + " <td>@Issamoodi @weakintheheart @trishapaytas While...</td>\n", |
| 174 | + " <td>1</td>\n", |
| 175 | + " </tr>\n", |
| 176 | + " </tbody>\n", |
| 177 | + "</table>\n", |
| 178 | + "</div>" |
| 179 | + ], |
| 180 | + "text/plain": [ |
| 181 | + " id text \\\n", |
| 182 | + "0 1244295516927688712 @SAfmnews The tweets in here are full of spark... \n", |
| 183 | + "1 1244171436907999232 @CHINWENDUH @Ikelectron @oblomart @I_amDozie H... \n", |
| 184 | + "2 1244043940736704517 @JuliaHB1 l am old,but I understand that this ... \n", |
| 185 | + "3 1243605527663448068 @pril_98 @TwoDaeFourEight @lifelessmachine @sp... \n", |
| 186 | + "4 1243259668174008321 someone is already 21 yrs old but can't even m... \n", |
| 187 | + "5 1242642040103424000 With kiwis using their devices more & scam... \n", |
| 188 | + "6 1242567113262256128 @digiwonk @nora3000 Hi big fan of @spark and @... \n", |
| 189 | + "7 1242452796659523584 Let there be light, let there be light\\nI spar... \n", |
| 190 | + "8 1242189629819887616 @Issamoodi @weakintheheart @trishapaytas While... \n", |
| 191 | + "\n", |
| 192 | + " label \n", |
| 193 | + "0 1 \n", |
| 194 | + "1 1 \n", |
| 195 | + "2 1 \n", |
| 196 | + "3 1 \n", |
| 197 | + "4 1 \n", |
| 198 | + "5 1 \n", |
| 199 | + "6 1 \n", |
| 200 | + "7 1 \n", |
| 201 | + "8 1 " |
| 202 | + ] |
| 203 | + }, |
| 204 | + "execution_count": 7, |
| 205 | + "metadata": {}, |
| 206 | + "output_type": "execute_result" |
| 207 | + } |
| 208 | + ], |
| 209 | + "source": [ |
| 210 | + "#Twitter is queried\n", |
| 211 | + "response = python_tweets.search(q='airpods', since = \"2016-12-13\", count=5000, lang='en')\n", |
| 212 | + "\n", |
| 213 | + "#Results are printed\n", |
| 214 | + "#print(json.dumps(response, sort_keys = True, indent = 2))\n", |
| 215 | + "\n", |
| 216 | + "# Search tweets\n", |
| 217 | + "dict_ = {'id': [], 'text': [], 'label':[]}\n", |
| 218 | + "p = 0 # positive meaning tweets\n", |
| 219 | + "n = 0 # negative meaning tweets\n", |
| 220 | + "for status in response['statuses']:\n", |
| 221 | + " if (not status['retweeted']) and ('RT @' not in status['text']):\n", |
| 222 | + " if n == 14 and p == 14:\n", |
| 223 | + " break\n", |
| 224 | + " if sentiment(status['text']) and p < 14:\n", |
| 225 | + " dict_['id'].append(status['id'])\n", |
| 226 | + " dict_['text'].append(status['text'])\n", |
| 227 | + " dict_['label'].append(1)\n", |
| 228 | + " p+=1\n", |
| 229 | + " elif sentiment(status['text']) and n < 14:\n", |
| 230 | + " dict_['id'].append(status['id'])\n", |
| 231 | + " dict_['text'].append(status['text'])\n", |
| 232 | + " dict_['label'].append(0)\n", |
| 233 | + " n+=1\n", |
| 234 | + "\n", |
| 235 | + "# Structure data in a pandas DataFrame for easier manipulation\n", |
| 236 | + "df = pd.DataFrame(dict_)\n", |
| 237 | + "#df.sort_values(by='favorite_count', inplace=True, ascending=False)" |
| 238 | + ] |
| 239 | + }, |
| 240 | + { |
| 241 | + "cell_type": "code", |
| 242 | + "execution_count": 4, |
| 243 | + "metadata": {}, |
| 244 | + "outputs": [], |
| 245 | + "source": [ |
| 246 | + "#Twitter is queried\n", |
| 247 | + "response = python_tweets.search(q='iphone12', since = \"2019-09-20\", count=2000, lang='en')\n", |
| 248 | + "\n", |
| 249 | + "#Results are printed\n", |
| 250 | + "#print(json.dumps(response, sort_keys = True, indent = 2))\n", |
| 251 | + "\n", |
| 252 | + "# Search tweets\n", |
| 253 | + "p = 0 # positive meaning tweets\n", |
| 254 | + "n = 0 # negative meaning tweets\n", |
| 255 | + "for status in response['statuses']:\n", |
| 256 | + " if (not status['retweeted']) and ('RT @' not in status['text']):\n", |
| 257 | + " if n == 8 and p == 8:\n", |
| 258 | + " break\n", |
| 259 | + " if sentiment(status['text']) and p < 8:\n", |
| 260 | + " dict_['id'].append(status['id'])\n", |
| 261 | + " dict_['text'].append(status['text'])\n", |
| 262 | + " dict_['label'].append(1)\n", |
| 263 | + " p+=1\n", |
| 264 | + " elif sentiment(status['text']) and n < 8:\n", |
| 265 | + " dict_['id'].append(status['id'])\n", |
| 266 | + " dict_['text'].append(status['text'])\n", |
| 267 | + " dict_['label'].append(0)\n", |
| 268 | + " n+=1\n", |
| 269 | + "\n", |
| 270 | + "# Structure data in a pandas DataFrame for easier manipulation\n", |
| 271 | + "df = pd.DataFrame(dict_)\n", |
| 272 | + "#df.sort_values(by='favorite_count', inplace=True, ascending=False)" |
| 273 | + ] |
| 274 | + }, |
| 275 | + { |
| 276 | + "cell_type": "code", |
| 277 | + "execution_count": 5, |
| 278 | + "metadata": {}, |
| 279 | + "outputs": [], |
| 280 | + "source": [ |
| 281 | + "#Twitter is queried\n", |
| 282 | + "response = python_tweets.search(q='macbookpro16', since = \"2013-06-05\", count=100000, lang='en')\n", |
| 283 | + "\n", |
| 284 | + "#Results are printed\n", |
| 285 | + "#print(json.dumps(response, sort_keys = True, indent = 2))\n", |
| 286 | + "\n", |
| 287 | + "# Search tweets\n", |
| 288 | + "p = 0 # positive meaning tweets\n", |
| 289 | + "n = 0 # negative meaning tweets\n", |
| 290 | + "for status in response['statuses']:\n", |
| 291 | + " if (not status['retweeted']) and ('RT @' not in status['text']):\n", |
| 292 | + " if n == 3 and p == 3:\n", |
| 293 | + " break\n", |
| 294 | + " if sentiment(status['text']) and p < 3:\n", |
| 295 | + " dict_['id'].append(status['id'])\n", |
| 296 | + " dict_['text'].append(status['text'])\n", |
| 297 | + " dict_['label'].append(1)\n", |
| 298 | + " p+=1\n", |
| 299 | + " elif sentiment(status['text']) and n < 3:\n", |
| 300 | + " dict_['id'].append(status['id'])\n", |
| 301 | + " dict_['text'].append(status['text'])\n", |
| 302 | + " dict_['label'].append(0)\n", |
| 303 | + " n+=1\n", |
| 304 | + "\n", |
| 305 | + "# Structure data in a pandas DataFrame for easier manipulation\n", |
| 306 | + "df = pd.DataFrame(dict_)\n", |
| 307 | + "#df.sort_values(by='favorite_count', inplace=True, ascending=False)" |
| 308 | + ] |
| 309 | + }, |
| 310 | + { |
| 311 | + "cell_type": "code", |
| 312 | + "execution_count": 7, |
| 313 | + "metadata": {}, |
| 314 | + "outputs": [ |
| 315 | + { |
| 316 | + "name": "stdout", |
| 317 | + "output_type": "stream", |
| 318 | + "text": [ |
| 319 | + "<class 'pandas.core.frame.DataFrame'>\n", |
| 320 | + "RangeIndex: 50 entries, 0 to 49\n", |
| 321 | + "Data columns (total 3 columns):\n", |
| 322 | + "id 50 non-null int64\n", |
| 323 | + "text 50 non-null object\n", |
| 324 | + "label 50 non-null int64\n", |
| 325 | + "dtypes: int64(2), object(1)\n", |
| 326 | + "memory usage: 1.3+ KB\n" |
| 327 | + ] |
| 328 | + } |
| 329 | + ], |
| 330 | + "source": [ |
| 331 | + "df.info()" |
| 332 | + ] |
| 333 | + }, |
| 334 | + { |
| 335 | + "cell_type": "markdown", |
| 336 | + "metadata": {}, |
| 337 | + "source": [ |
| 338 | + "#### Export your dataframe as a `json` file" |
| 339 | + ] |
| 340 | + }, |
| 341 | + { |
| 342 | + "cell_type": "code", |
| 343 | + "execution_count": 6, |
| 344 | + "metadata": {}, |
| 345 | + "outputs": [], |
| 346 | + "source": [ |
| 347 | + "df.to_json (r'piratacodex.json',orient='records')" |
| 348 | + ] |
| 349 | + } |
| 350 | + ], |
| 351 | + "metadata": { |
| 352 | + "kernelspec": { |
| 353 | + "display_name": "Python 3", |
| 354 | + "language": "python", |
| 355 | + "name": "python3" |
| 356 | + }, |
| 357 | + "language_info": { |
| 358 | + "codemirror_mode": { |
| 359 | + "name": "ipython", |
| 360 | + "version": 3 |
| 361 | + }, |
| 362 | + "file_extension": ".py", |
| 363 | + "mimetype": "text/x-python", |
| 364 | + "name": "python", |
| 365 | + "nbconvert_exporter": "python", |
| 366 | + "pygments_lexer": "ipython3", |
| 367 | + "version": "3.7.6" |
| 368 | + } |
| 369 | + }, |
| 370 | + "nbformat": 4, |
| 371 | + "nbformat_minor": 4 |
| 372 | +} |
0 commit comments