@@ -6154,11 +6154,11 @@ public static Tensor crop_and_resize (Tensor image, Tensor boxes, Tensor box_ind
6154
6154
/// in normalized coordinates <c>[y1, x1, y2, x2]</c>. A normalized coordinate value of
6155
6155
/// <c>y</c> is mapped to the image coordinate at <c>y * (image_height - 1)</c>, so as the
6156
6156
/// <c>[0, 1]</c> interval of normalized image height is mapped to
6157
- /// <c>[0, image_height - 1] in image height coordinates. We do allow y1 &gt; y2, in
6157
+ /// <c>[0, image_height - 1]</c> in image height coordinates. We do allow y1 &gt; y2, in
6158
6158
/// which case the sampled crop is an up-down flipped version of the original
6159
6159
/// image. The width dimension is treated similarly. Normalized coordinates
6160
- /// outside the </ c>[0, 1]<c> range are allowed, in which case we use
6161
- /// </ c>extrapolation_value<c> to extrapolate the input image values.
6160
+ /// outside the <c>[0, 1]</ c> range are allowed, in which case we use
6161
+ /// <c>extrapolation_value</ c> to extrapolate the input image values.
6162
6162
/// </param>
6163
6163
/// <param name="box_ind">
6164
6164
/// A 1-D tensor of shape <c>[num_boxes]</c> with int32 values in <c>[0, batch)</c>.
@@ -6200,11 +6200,11 @@ public static Tensor crop_and_resize_grad_boxes (Tensor grads, Tensor image, Ten
6200
6200
/// in normalized coordinates <c>[y1, x1, y2, x2]</c>. A normalized coordinate value of
6201
6201
/// <c>y</c> is mapped to the image coordinate at <c>y * (image_height - 1)</c>, so as the
6202
6202
/// <c>[0, 1]</c> interval of normalized image height is mapped to
6203
- /// <c>[0, image_height - 1] in image height coordinates. We do allow y1 &gt; y2, in
6203
+ /// <c>[0, image_height - 1]</c> in image height coordinates. We do allow y1 &gt; y2, in
6204
6204
/// which case the sampled crop is an up-down flipped version of the original
6205
6205
/// image. The width dimension is treated similarly. Normalized coordinates
6206
- /// outside the </ c>[0, 1]<c> range are allowed, in which case we use
6207
- /// </ c>extrapolation_value<c> to extrapolate the input image values.
6206
+ /// outside the <c>[0, 1]</ c> range are allowed, in which case we use
6207
+ /// <c>extrapolation_value</ c> to extrapolate the input image values.
6208
6208
/// </param>
6209
6209
/// <param name="box_ind">
6210
6210
/// A 1-D tensor of shape <c>[num_boxes]</c> with int32 values in <c>[0, batch)</c>.
@@ -15982,9 +15982,9 @@ public static Tensor matrix_determinant (Tensor input, string name = "MatrixDete
15982
15982
/// everything else padded with zeros. The diagonal is computed as follows:
15983
15983
///
15984
15984
/// Assume <c>diagonal</c> has <c>k</c> dimensions <c>[I, J, K, ..., N]</c>, then the output is a
15985
- /// tensor of rank <c>k+1</c> with dimensions [I, J, K, ..., N, N]<c> where:
15985
+ /// tensor of rank <c>k+1</c> with dimensions <c> [I, J, K, ..., N, N]</ c> where:
15986
15986
///
15987
- /// </ c>output[i, j, k, ..., m, n] = 1{m=n} * diagonal[i, j, k, ..., n]<c>.
15987
+ /// <c>output[i, j, k, ..., m, n] = 1{m=n} * diagonal[i, j, k, ..., n]</ c>.
15988
15988
///
15989
15989
/// For example:
15990
15990
///
@@ -18540,7 +18540,8 @@ public static Tensor nth_element (Tensor input, Tensor n, bool? reverse = null,
18540
18540
/// ][
18541
18541
/// [0.0, 1.0, 0.0] // one_hot(1)
18542
18542
/// [0.0, 0.0, 0.0] // one_hot(-1)
18543
- /// ]<c></c><c>
18543
+ /// ]
18544
+ /// </code>
18544
18545
/// </remarks>
18545
18546
public static Tensor one_hot (Tensor indices, Tensor depth, Tensor on_value, Tensor off_value, int? axis = null, string name = "OneHot")
18546
18547
{
@@ -21850,7 +21851,6 @@ public static (Tensor activations, Tensor min_activations, Tensor max_activation
21850
21851
/// The Operation can be fetched from any of the Tensorreturned in the tuple values, by fetching the Operation property.
21851
21852
/// </returns>
21852
21853
/// <remarks>
21853
- /// <code>
21854
21854
/// </remarks>
21855
21855
public static (Tensor output, Tensor output_min, Tensor output_max) quantized_reshape (Tensor tensor, Tensor shape, Tensor input_min, Tensor input_max, string name = "QuantizedReshape")
21856
21856
{
@@ -26970,10 +26970,10 @@ public static Operation resource_sparse_apply_r_m_s_prop (Tensor var, Tensor ms,
26970
26970
/// <remarks>
26971
26971
/// The values of <c>value</c> are assigned to the positions in the variable
26972
26972
/// <c>ref</c> that are selected by the slice parameters. The slice parameters
26973
- /// <c>begin, </ c>end<c>, </ c>strides<c>, etc. work exactly as in </ c>StridedSlice<c>.
26973
+ /// <c>begin</c> , <c>end</ c>, <c>strides</ c>, etc. work exactly as in <c>StridedSlice</ c>.
26974
26974
///
26975
- /// NOTE this op currently does not support broadcasting and so </ c>value<c>'s
26976
- /// shape must be exactly the shape produced by the slice of </ c>ref<c>.
26975
+ /// NOTE this op currently does not support broadcasting and so <c>value</ c>'s
26976
+ /// shape must be exactly the shape produced by the slice of <c>ref</ c>.
26977
26977
/// </remarks>
26978
26978
public static Operation resource_strided_slice_assign (Tensor referecne, Tensor begin, Tensor end, Tensor strides, Tensor value, int? begin_mask = null, int? end_mask = null, int? ellipsis_mask = null, int? new_axis_mask = null, int? shrink_axis_mask = null, string name = "ResourceStridedSliceAssign")
26979
26979
{
@@ -28068,7 +28068,7 @@ public static Operation save_v2 (Tensor prefix, Tensor tensor_names, Tensor shap
28068
28068
/// Tags for the summary.
28069
28069
/// </param>
28070
28070
/// <param name="values">
28071
- /// Same shape as <c>tags. Values for the summary.
28071
+ /// Same shape as <c>tags</c> . Values for the summary.
28072
28072
/// </param>
28073
28073
/// <param name="name">
28074
28074
/// If specified, the created operation in the graph will be this one, otherwise it will be named 'ScalarSummary'.
@@ -34548,10 +34548,10 @@ public static Tensor strided_slice (Tensor input, Tensor begin, Tensor end, Tens
34548
34548
/// <remarks>
34549
34549
/// The values of <c>value</c> are assigned to the positions in the variable
34550
34550
/// <c>ref</c> that are selected by the slice parameters. The slice parameters
34551
- /// <c>begin, </ c>end<c>, </ c>strides<c>, etc. work exactly as in </ c>StridedSlice<c>.
34551
+ /// <c>begin</c> , <c>end</ c>, <c>strides</ c>, etc. work exactly as in <c>StridedSlice</ c>.
34552
34552
///
34553
- /// NOTE this op currently does not support broadcasting and so </ c>value<c>'s
34554
- /// shape must be exactly the shape produced by the slice of </ c>ref<c>.
34553
+ /// NOTE this op currently does not support broadcasting and so <c>value</ c>'s
34554
+ /// shape must be exactly the shape produced by the slice of <c>ref</ c>.
34555
34555
/// </remarks>
34556
34556
public static Tensor strided_slice_assign (Tensor referecne, Tensor begin, Tensor end, Tensor strides, Tensor value, int? begin_mask = null, int? end_mask = null, int? ellipsis_mask = null, int? new_axis_mask = null, int? shrink_axis_mask = null, string name = "StridedSliceAssign")
34557
34557
{
@@ -36554,21 +36554,21 @@ public static Tensor tensor_array_split_v2 (Tensor handle, Tensor value, Tensor
36554
36554
/// and that <c>value</c> has shape
36555
36555
///
36556
36556
/// <code>
36557
- /// (n0 + n1 + ... + n(T-1) x d0 x d1 x ...)<c></c><c >,
36557
+ /// (n0 + n1 + ... + n(T-1) x d0 x d1 x ...)</code >,
36558
36558
///
36559
36559
/// this splits values into a TensorArray with T tensors.
36560
36560
///
36561
36561
/// TensorArray index t will be the subtensor of values with starting position
36562
36562
///
36563
- /// </ code>
36563
+ /// <code>
36564
36564
/// (n0 + n1 + ... + n(t-1), 0, 0, ...)
36565
- /// <code>
36565
+ /// </ code>
36566
36566
///
36567
36567
/// and having size
36568
36568
///
36569
- /// </ code>
36569
+ /// <code>
36570
36570
/// nt x d0 x d1 x ...
36571
- /// <code>
36571
+ /// </ code>
36572
36572
/// </remarks>
36573
36573
public static Tensor tensor_array_split_v3 (Tensor handle, Tensor value, Tensor lengths, Tensor flow_in, string name = "TensorArraySplitV3")
36574
36574
{
@@ -38107,9 +38107,9 @@ public static (Tensor y, Tensor idx) unique (Tensor x, TF_DataType? out_idx = nu
38107
38107
/// This operation also returns a tensor <c>idx</c> that is the same size as
38108
38108
/// the number of the elements in <c>x</c> along the <c>axis</c> dimension. It
38109
38109
/// contains the index in the unique output <c>y</c>.
38110
- /// In other words, for an <c>1-D</c> tensor <c>x</c> with <c>axis = None:
38110
+ /// In other words, for an <c>1-D</c> tensor <c>x</c> with <c>axis = None</c> :
38111
38111
///
38112
- /// </ c>y[idx[i]] = x[i] for i in [0, 1,...,rank(x) - 1]<c>
38112
+ /// <c>y[idx[i]] = x[i] for i in [0, 1,...,rank(x) - 1]</ c>
38113
38113
///
38114
38114
/// For example:
38115
38115
///
@@ -38120,7 +38120,7 @@ public static (Tensor y, Tensor idx) unique (Tensor x, TF_DataType? out_idx = nu
38120
38120
/// idx ==&gt; [0, 0, 1, 2, 2, 2, 3, 4, 4]
38121
38121
/// </code>
38122
38122
///
38123
- /// For an </ c>2-D<c> tensor </ c>x<c> with </ c>axis = 0<c>:
38123
+ /// For an <c>2-D</ c> tensor <c>x</ c> with <c>axis = 0</ c>:
38124
38124
///
38125
38125
/// <code>
38126
38126
/// # tensor 'x' is [[1, 0, 0],
@@ -38132,7 +38132,7 @@ public static (Tensor y, Tensor idx) unique (Tensor x, TF_DataType? out_idx = nu
38132
38132
/// idx ==&gt; [0, 0, 1]
38133
38133
/// </code>
38134
38134
///
38135
- /// For an </ c>2-D<c> tensor </ c>x<c> with </ c>axis = 1<c>:
38135
+ /// For an <c>2-D</ c> tensor <c>x</ c> with <c>axis = 1</ c>:
38136
38136
///
38137
38137
/// <code>
38138
38138
/// # tensor 'x' is [[1, 0, 0],
@@ -38241,9 +38241,9 @@ public static (Tensor y, Tensor idx, Tensor count) unique_with_counts (Tensor x,
38241
38241
/// that are the same size as the number of the elements in <c>x</c> along the
38242
38242
/// <c>axis</c> dimension. The <c>idx</c> contains the index in the unique output <c>y</c>
38243
38243
/// and the <c>count</c> contains the count in the unique output <c>y</c>.
38244
- /// In other words, for an <c>1-D</c> tensor <c>x</c> with <c>axis = None:
38244
+ /// In other words, for an <c>1-D</c> tensor <c>x</c> with <c>axis = None</c> :
38245
38245
///
38246
- /// </ c>y[idx[i]] = x[i] for i in [0, 1,...,rank(x) - 1]<c>
38246
+ /// <c>y[idx[i]] = x[i] for i in [0, 1,...,rank(x) - 1]</ c>
38247
38247
///
38248
38248
/// For example:
38249
38249
///
@@ -38255,7 +38255,7 @@ public static (Tensor y, Tensor idx, Tensor count) unique_with_counts (Tensor x,
38255
38255
/// count ==&gt; [2, 1, 3, 1, 2]
38256
38256
/// </code>
38257
38257
///
38258
- /// For an </ c>2-D<c> tensor </ c>x<c> with </ c>axis = 0<c>:
38258
+ /// For an <c>2-D</ c> tensor <c>x</ c> with <c>axis = 0</ c>:
38259
38259
///
38260
38260
/// <code>
38261
38261
/// # tensor 'x' is [[1, 0, 0],
@@ -38268,7 +38268,7 @@ public static (Tensor y, Tensor idx, Tensor count) unique_with_counts (Tensor x,
38268
38268
/// count ==&gt; [2, 1]
38269
38269
/// </code>
38270
38270
///
38271
- /// For an </ c>2-D<c> tensor </ c>x<c> with </ c>axis = 1<c>:
38271
+ /// For an <c>2-D</ c> tensor <c>x</ c> with <c>axis = 1</ c>:
38272
38272
///
38273
38273
/// <code>
38274
38274
/// # tensor 'x' is [[1, 0, 0],
0 commit comments