-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathFABPP.m
149 lines (127 loc) · 3.47 KB
/
FABPP.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
clc;
clear;
close all;
%% Problem
tic
Items = [6 3 4 6 8 7 4 7 7 5 5 6 7 7 6 4 8 7 8 8 2 1 4 9 6];
BinSize = 35;
model = CreateModel(Items,BinSize); % Create Bin Packing Model
CostFunction = @(x) BinPackingCost(x, model); % Objective Function
nVar = 2*model.n-1; % Number of Decision Variables
VarSize = [1 nVar]; % Decision Variables Matrix Size
VarMin = 0; % Lower Bound of Decision Variables
VarMax = 1; % Upper Bound of Decision Variables
%% Firefly Algorithm Parameters
MaxIt=200; % Maximum Number of Iterations
nPop=10; % Number of Fireflies (Swarm Size)
gamma=1; % Light Absorption Coefficient
beta0=2; % Attraction Coefficient Base Value
alpha=0.2; % Mutation Coefficient
alpha_damp=0.98; % Mutation Coefficient Damping Ratio
delta=0.05*(VarMax-VarMin); % Uniform Mutation Range
m=2;
if isscalar(VarMin) && isscalar(VarMax)
dmax = (VarMax-VarMin)*sqrt(nVar);
else
dmax = norm(VarMax-VarMin);
end
nMutation = 3; % Number of Additional Mutation Operations
%% Start
% Empty Firefly Structure
firefly.Position=[];
firefly.Cost=[];
firefly.Sol=[];
% Initialize Population Array
pop=repmat(firefly,nPop,1);
% Initialize Best Solution Ever Found
BestSol.Cost=inf;
% Create Initial Fireflies
for i=1:nPop
pop(i).Position=unifrnd(VarMin,VarMax,VarSize);
[pop(i).Cost, pop(i).Sol]=CostFunction(pop(i).Position);
if pop(i).Cost<=BestSol.Cost
BestSol=pop(i);
end
end
% Array to Hold Best Cost Values
BestCost=zeros(MaxIt,1);
%% Firefly Algorithm Body
for it=1:MaxIt
newpop=repmat(firefly,nPop,1);
for i=1:nPop
newpop(i).Cost = inf;
for j=1:nPop
if pop(j).Cost < pop(i).Cost || i==j
rij=norm(pop(i).Position-pop(j).Position)/dmax;
beta=beta0*exp(-gamma*rij^m);
e=delta*unifrnd(-1,+1,VarSize);
%e=delta*randn(VarSize);
newsol.Position = pop(i).Position ...
+ beta*rand(VarSize).*(pop(j).Position-pop(i).Position) ...
+ alpha*e;
newsol.Position=max(newsol.Position,VarMin);
newsol.Position=min(newsol.Position,VarMax);
[newsol.Cost, newsol.Sol]=CostFunction(newsol.Position);
if newsol.Cost <= newpop(i).Cost
newpop(i) = newsol;
if newpop(i).Cost<=BestSol.Cost
BestSol=newpop(i);
end
end
end
end
% Perform Mutation
for k=1:nMutation
newsol.Position = Mutate(pop(i).Position);
[newsol.Cost, newsol.Sol]=CostFunction(newsol.Position);
if newsol.Cost <= newpop(i).Cost
newpop(i) = newsol;
if newpop(i).Cost<=BestSol.Cost
BestSol=newpop(i);
end
end
end
end
% Merge
pop=[pop
newpop];
% Sort
[~, SortOrder]=sort([pop.Cost]);
pop=pop(SortOrder);
% Truncate
pop=pop(1:nPop);
% Store Best Cost Ever Found
BestCost(it)=BestSol.Cost;
% Show Iteration Information
disp(['Iteration ' num2str(it) ': Best Cost = ' num2str(BestCost(it))]);
% Damp Mutation Coefficient
alpha = alpha*alpha_damp;
end
%% Results
figure;
plot(BestCost,'k', 'LineWidth', 2);
xlabel('ITR');
ylabel('Cost Value');
ax = gca;
ax.FontSize = 14;
ax.FontWeight='bold';
set(gca,'Color','c')
grid on;
%% Statistics
items=model.v;
itemindex=BestSol.Sol.B;
sizebins=size(itemindex);
for i=1: sizebins(1,1)
itemvalue{i}=items(itemindex{i});
end;
itemvalue=itemvalue';
%
disp(['Number of Items is ' num2str(model.n)]);
disp(['Items are ' num2str(items)]);
disp(['Bins size is ' num2str(model.Vmax)]);
disp(['Selected bins is ' num2str(BestCost(end))]);
disp(['Selected bins indexes are ']);
itemindex
disp(['Selected bins values are ']);
itemvalue
toc