|
| 1 | + |
| 2 | +import tensorflow as tf |
| 3 | +import core.common as common |
| 4 | + |
| 5 | +def darknet53(input_data): |
| 6 | + |
| 7 | + input_data = common.convolutional(input_data, (3, 3, 3, 32)) |
| 8 | + input_data = common.convolutional(input_data, (3, 3, 32, 64), downsample=True) |
| 9 | + |
| 10 | + for i in range(1): |
| 11 | + input_data = common.residual_block(input_data, 64, 32, 64) |
| 12 | + |
| 13 | + input_data = common.convolutional(input_data, (3, 3, 64, 128), downsample=True) |
| 14 | + |
| 15 | + for i in range(2): |
| 16 | + input_data = common.residual_block(input_data, 128, 64, 128) |
| 17 | + |
| 18 | + input_data = common.convolutional(input_data, (3, 3, 128, 256), downsample=True) |
| 19 | + |
| 20 | + for i in range(8): |
| 21 | + input_data = common.residual_block(input_data, 256, 128, 256) |
| 22 | + |
| 23 | + route_1 = input_data |
| 24 | + input_data = common.convolutional(input_data, (3, 3, 256, 512), downsample=True) |
| 25 | + |
| 26 | + for i in range(8): |
| 27 | + input_data = common.residual_block(input_data, 512, 256, 512) |
| 28 | + |
| 29 | + route_2 = input_data |
| 30 | + input_data = common.convolutional(input_data, (3, 3, 512, 1024), downsample=True) |
| 31 | + |
| 32 | + for i in range(4): |
| 33 | + input_data = common.residual_block(input_data, 1024, 512, 1024) |
| 34 | + |
| 35 | + return route_1, route_2, input_data |
| 36 | + |
| 37 | +def cspdarknet53(input_data): |
| 38 | + |
| 39 | + input_data = common.convolutional(input_data, (3, 3, 3, 32), activate_type="mish") |
| 40 | + input_data = common.convolutional(input_data, (3, 3, 32, 64), downsample=True, activate_type="mish") |
| 41 | + |
| 42 | + route = input_data |
| 43 | + route = common.convolutional(route, (1, 1, 64, 64), activate_type="mish") |
| 44 | + input_data = common.convolutional(input_data, (1, 1, 64, 64), activate_type="mish") |
| 45 | + for i in range(1): |
| 46 | + input_data = common.residual_block(input_data, 64, 32, 64, activate_type="mish") |
| 47 | + input_data = common.convolutional(input_data, (1, 1, 64, 64), activate_type="mish") |
| 48 | + |
| 49 | + input_data = tf.concat([input_data, route], axis=-1) |
| 50 | + input_data = common.convolutional(input_data, (1, 1, 128, 64), activate_type="mish") |
| 51 | + input_data = common.convolutional(input_data, (3, 3, 64, 128), downsample=True, activate_type="mish") |
| 52 | + route = input_data |
| 53 | + route = common.convolutional(route, (1, 1, 128, 64), activate_type="mish") |
| 54 | + input_data = common.convolutional(input_data, (1, 1, 128, 64), activate_type="mish") |
| 55 | + for i in range(2): |
| 56 | + input_data = common.residual_block(input_data, 64, 64, 64, activate_type="mish") |
| 57 | + input_data = common.convolutional(input_data, (1, 1, 64, 64), activate_type="mish") |
| 58 | + input_data = tf.concat([input_data, route], axis=-1) |
| 59 | + |
| 60 | + input_data = common.convolutional(input_data, (1, 1, 128, 128), activate_type="mish") |
| 61 | + input_data = common.convolutional(input_data, (3, 3, 128, 256), downsample=True, activate_type="mish") |
| 62 | + route = input_data |
| 63 | + route = common.convolutional(route, (1, 1, 256, 128), activate_type="mish") |
| 64 | + input_data = common.convolutional(input_data, (1, 1, 256, 128), activate_type="mish") |
| 65 | + for i in range(8): |
| 66 | + input_data = common.residual_block(input_data, 128, 128, 128, activate_type="mish") |
| 67 | + input_data = common.convolutional(input_data, (1, 1, 128, 128), activate_type="mish") |
| 68 | + input_data = tf.concat([input_data, route], axis=-1) |
| 69 | + |
| 70 | + input_data = common.convolutional(input_data, (1, 1, 256, 256), activate_type="mish") |
| 71 | + route_1 = input_data |
| 72 | + input_data = common.convolutional(input_data, (3, 3, 256, 512), downsample=True, activate_type="mish") |
| 73 | + route = input_data |
| 74 | + route = common.convolutional(route, (1, 1, 512, 256), activate_type="mish") |
| 75 | + input_data = common.convolutional(input_data, (1, 1, 512, 256), activate_type="mish") |
| 76 | + for i in range(8): |
| 77 | + input_data = common.residual_block(input_data, 256, 256, 256, activate_type="mish") |
| 78 | + input_data = common.convolutional(input_data, (1, 1, 256, 256), activate_type="mish") |
| 79 | + input_data = tf.concat([input_data, route], axis=-1) |
| 80 | + |
| 81 | + input_data = common.convolutional(input_data, (1, 1, 512, 512), activate_type="mish") |
| 82 | + route_2 = input_data |
| 83 | + input_data = common.convolutional(input_data, (3, 3, 512, 1024), downsample=True, activate_type="mish") |
| 84 | + route = input_data |
| 85 | + route = common.convolutional(route, (1, 1, 1024, 512), activate_type="mish") |
| 86 | + input_data = common.convolutional(input_data, (1, 1, 1024, 512), activate_type="mish") |
| 87 | + for i in range(4): |
| 88 | + input_data = common.residual_block(input_data, 512, 512, 512, activate_type="mish") |
| 89 | + input_data = common.convolutional(input_data, (1, 1, 512, 512), activate_type="mish") |
| 90 | + input_data = tf.concat([input_data, route], axis=-1) |
| 91 | + |
| 92 | + input_data = common.convolutional(input_data, (1, 1, 1024, 1024), activate_type="mish") |
| 93 | + input_data = common.convolutional(input_data, (1, 1, 1024, 512)) |
| 94 | + input_data = common.convolutional(input_data, (3, 3, 512, 1024)) |
| 95 | + input_data = common.convolutional(input_data, (1, 1, 1024, 512)) |
| 96 | + |
| 97 | + input_data = tf.concat([tf.nn.max_pool(input_data, ksize=13, padding='SAME', strides=1), tf.nn.max_pool(input_data, ksize=9, padding='SAME', strides=1) |
| 98 | + , tf.nn.max_pool(input_data, ksize=5, padding='SAME', strides=1), input_data], axis=-1) |
| 99 | + input_data = common.convolutional(input_data, (1, 1, 2048, 512)) |
| 100 | + input_data = common.convolutional(input_data, (3, 3, 512, 1024)) |
| 101 | + input_data = common.convolutional(input_data, (1, 1, 1024, 512)) |
| 102 | + |
| 103 | + return route_1, route_2, input_data |
| 104 | + |
| 105 | +def cspdarknet53_tiny(input_data): |
| 106 | + input_data = common.convolutional(input_data, (3, 3, 3, 32), downsample=True) |
| 107 | + input_data = common.convolutional(input_data, (3, 3, 32, 64), downsample=True) |
| 108 | + input_data = common.convolutional(input_data, (3, 3, 64, 64)) |
| 109 | + |
| 110 | + route = input_data |
| 111 | + input_data = common.route_group(input_data, 2, 1) |
| 112 | + input_data = common.convolutional(input_data, (3, 3, 32, 32)) |
| 113 | + route_1 = input_data |
| 114 | + input_data = common.convolutional(input_data, (3, 3, 32, 32)) |
| 115 | + input_data = tf.concat([input_data, route_1], axis=-1) |
| 116 | + input_data = common.convolutional(input_data, (1, 1, 32, 64)) |
| 117 | + input_data = tf.concat([route, input_data], axis=-1) |
| 118 | + input_data = tf.keras.layers.MaxPool2D(2, 2, 'same')(input_data) |
| 119 | + |
| 120 | + input_data = common.convolutional(input_data, (3, 3, 64, 128)) |
| 121 | + route = input_data |
| 122 | + input_data = common.route_group(input_data, 2, 1) |
| 123 | + input_data = common.convolutional(input_data, (3, 3, 64, 64)) |
| 124 | + route_1 = input_data |
| 125 | + input_data = common.convolutional(input_data, (3, 3, 64, 64)) |
| 126 | + input_data = tf.concat([input_data, route_1], axis=-1) |
| 127 | + input_data = common.convolutional(input_data, (1, 1, 64, 128)) |
| 128 | + input_data = tf.concat([route, input_data], axis=-1) |
| 129 | + input_data = tf.keras.layers.MaxPool2D(2, 2, 'same')(input_data) |
| 130 | + |
| 131 | + input_data = common.convolutional(input_data, (3, 3, 128, 256)) |
| 132 | + route = input_data |
| 133 | + input_data = common.route_group(input_data, 2, 1) |
| 134 | + input_data = common.convolutional(input_data, (3, 3, 128, 128)) |
| 135 | + route_1 = input_data |
| 136 | + input_data = common.convolutional(input_data, (3, 3, 128, 128)) |
| 137 | + input_data = tf.concat([input_data, route_1], axis=-1) |
| 138 | + input_data = common.convolutional(input_data, (1, 1, 128, 256)) |
| 139 | + route_1 = input_data |
| 140 | + input_data = tf.concat([route, input_data], axis=-1) |
| 141 | + input_data = tf.keras.layers.MaxPool2D(2, 2, 'same')(input_data) |
| 142 | + |
| 143 | + input_data = common.convolutional(input_data, (3, 3, 512, 512)) |
| 144 | + |
| 145 | + return route_1, input_data |
| 146 | + |
| 147 | +def darknet53_tiny(input_data): |
| 148 | + input_data = common.convolutional(input_data, (3, 3, 3, 16)) |
| 149 | + input_data = tf.keras.layers.MaxPool2D(2, 2, 'same')(input_data) |
| 150 | + input_data = common.convolutional(input_data, (3, 3, 16, 32)) |
| 151 | + input_data = tf.keras.layers.MaxPool2D(2, 2, 'same')(input_data) |
| 152 | + input_data = common.convolutional(input_data, (3, 3, 32, 64)) |
| 153 | + input_data = tf.keras.layers.MaxPool2D(2, 2, 'same')(input_data) |
| 154 | + input_data = common.convolutional(input_data, (3, 3, 64, 128)) |
| 155 | + input_data = tf.keras.layers.MaxPool2D(2, 2, 'same')(input_data) |
| 156 | + input_data = common.convolutional(input_data, (3, 3, 128, 256)) |
| 157 | + route_1 = input_data |
| 158 | + input_data = tf.keras.layers.MaxPool2D(2, 2, 'same')(input_data) |
| 159 | + input_data = common.convolutional(input_data, (3, 3, 256, 512)) |
| 160 | + input_data = tf.keras.layers.MaxPool2D(2, 1, 'same')(input_data) |
| 161 | + input_data = common.convolutional(input_data, (3, 3, 512, 1024)) |
| 162 | + |
| 163 | + return route_1, input_data |
| 164 | + |
| 165 | + |
0 commit comments