|
| 1 | +import torch.nn as nn |
| 2 | +import torch.utils.model_zoo as model_zoo |
| 3 | + |
| 4 | +import torch |
| 5 | +from torch.nn import functional as F |
| 6 | + |
| 7 | +models_urls = { |
| 8 | + '101_voc': 'https://cloudstor.aarnet.edu.au/plus/s/Owmttk9bdPROwc6/download', |
| 9 | + '18_imagenet': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', |
| 10 | + '34_imagenet': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', |
| 11 | + '50_imagenet': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', |
| 12 | + '152_imagenet': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', |
| 13 | + '101_imagenet': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', |
| 14 | +} |
| 15 | + |
| 16 | + |
| 17 | +def maybe_download(model_name, model_url, model_dir=None, map_location=None): |
| 18 | + import os, sys |
| 19 | + from six.moves import urllib |
| 20 | + if model_dir is None: |
| 21 | + torch_home = os.path.expanduser(os.getenv('TORCH_HOME', '~/.torch')) |
| 22 | + model_dir = os.getenv('TORCH_MODEL_ZOO', os.path.join(torch_home, 'models')) |
| 23 | + if not os.path.exists(model_dir): |
| 24 | + os.makedirs(model_dir) |
| 25 | + filename = '{}.pth.tar'.format(model_name) |
| 26 | + cached_file = os.path.join(model_dir, filename) |
| 27 | + if not os.path.exists(cached_file): |
| 28 | + url = model_url |
| 29 | + sys.stderr.write('Downloading: "{}" to {}\n'.format(url, cached_file)) |
| 30 | + urllib.request.urlretrieve(url, cached_file) |
| 31 | + return torch.load(cached_file, map_location=map_location) |
| 32 | + |
| 33 | + |
| 34 | +def conv3x3(in_planes, out_planes, stride=1): |
| 35 | + """3x3 convolution with padding""" |
| 36 | + return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, |
| 37 | + padding=1, bias=False) |
| 38 | + |
| 39 | + |
| 40 | +def conv1x1(in_planes, out_planes, stride=1): |
| 41 | + """1x1 convolution""" |
| 42 | + return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) |
| 43 | + |
| 44 | +## wrong!! change ReLU to BN |
| 45 | +def conv3x3_bn(in_channel, out_channel): |
| 46 | + return nn.Sequential(nn.Conv2d(in_channel, out_channel, kernel_size=3, stride=1, padding=1, bias=False), |
| 47 | + nn.ReLU(inplace=True)) |
| 48 | + |
| 49 | + |
| 50 | +class GAU(nn.Module): |
| 51 | + def __init__(self, in_size, out_size): |
| 52 | + super(GAU, self).__init__() |
| 53 | + self.in_size = in_size |
| 54 | + self.out_size = out_size |
| 55 | + self.conv = nn.Conv2d(in_size*2, out_size, kernel_size=1, stride=1, bias=False) |
| 56 | + self.avg_pool = nn.AdaptiveAvgPool2d(1) |
| 57 | + self.bn=nn.BatchNorm2d(in_size) |
| 58 | + self.relu=nn.ReLU(inplace=True) |
| 59 | + |
| 60 | + def forward(self, input_low, input_high): |
| 61 | + |
| 62 | + high_size = input_high.size()[2:] |
| 63 | + # low channel usually > high channel |
| 64 | + # if self.in_size != self.out_size: |
| 65 | + # input_low = self.conv(input_low) |
| 66 | + upsample_low = F.upsample(input_low, high_size, mode='bilinear') |
| 67 | + input_cat = torch.cat([upsample_low, input_high], dim=1) |
| 68 | + input_cat=self.conv(input_cat) |
| 69 | + input_cat=self.bn(input_cat) |
| 70 | + input_cat=self.relu(input_cat) |
| 71 | + |
| 72 | + gp = self.avg_pool(input_cat) |
| 73 | + multiply=gp*input_cat |
| 74 | + # out=multiply+input_cat |
| 75 | + out = multiply + input_high |
| 76 | + return out |
| 77 | + |
| 78 | + |
| 79 | +class BasicBlock(nn.Module): |
| 80 | + expansion = 1 |
| 81 | + |
| 82 | + def __init__(self, inplanes, planes, stride=1, downsample=None): |
| 83 | + super(BasicBlock, self).__init__() |
| 84 | + self.conv1 = conv3x3(inplanes, planes, stride) |
| 85 | + self.bn1 = nn.BatchNorm2d(planes) |
| 86 | + self.relu = nn.ReLU(inplace=True) |
| 87 | + self.conv2 = conv3x3(planes, planes) |
| 88 | + self.bn2 = nn.BatchNorm2d(planes) |
| 89 | + self.downsample = downsample |
| 90 | + self.stride = stride |
| 91 | + |
| 92 | + def forward(self, x): |
| 93 | + identity = x |
| 94 | + |
| 95 | + out = self.conv1(x) |
| 96 | + out = self.bn1(out) |
| 97 | + out = self.relu(out) |
| 98 | + |
| 99 | + out = self.conv2(out) |
| 100 | + out = self.bn2(out) |
| 101 | + |
| 102 | + if self.downsample is not None: |
| 103 | + identity = self.downsample(x) |
| 104 | + |
| 105 | + out += identity |
| 106 | + out = self.relu(out) |
| 107 | + |
| 108 | + return out |
| 109 | + |
| 110 | + |
| 111 | +class Bottleneck(nn.Module): |
| 112 | + expansion = 4 |
| 113 | + |
| 114 | + def __init__(self, inplanes, planes, stride=1, downsample=None): |
| 115 | + super(Bottleneck, self).__init__() |
| 116 | + self.conv1 = conv1x1(inplanes, planes) |
| 117 | + self.bn1 = nn.BatchNorm2d(planes) |
| 118 | + self.conv2 = conv3x3(planes, planes, stride) |
| 119 | + self.bn2 = nn.BatchNorm2d(planes) |
| 120 | + self.conv3 = conv1x1(planes, planes * self.expansion) |
| 121 | + self.bn3 = nn.BatchNorm2d(planes * self.expansion) |
| 122 | + self.relu = nn.ReLU(inplace=True) |
| 123 | + self.downsample = downsample |
| 124 | + self.stride = stride |
| 125 | + |
| 126 | + def forward(self, x): |
| 127 | + identity = x |
| 128 | + |
| 129 | + out = self.conv1(x) |
| 130 | + out = self.bn1(out) |
| 131 | + out = self.relu(out) |
| 132 | + |
| 133 | + out = self.conv2(out) |
| 134 | + out = self.bn2(out) |
| 135 | + out = self.relu(out) |
| 136 | + |
| 137 | + out = self.conv3(out) |
| 138 | + out = self.bn3(out) |
| 139 | + |
| 140 | + if self.downsample is not None: |
| 141 | + identity = self.downsample(x) |
| 142 | + |
| 143 | + out += identity |
| 144 | + out = self.relu(out) |
| 145 | + |
| 146 | + return out |
| 147 | + |
| 148 | + |
| 149 | +class RefineBlock(nn.Module): |
| 150 | + def __init__(self, in_channel): |
| 151 | + super(RefineBlock, self).__init__() |
| 152 | + self.c1 = nn.Conv2d(in_channel, 512, kernel_size=1, stride=1, padding=0, bias=False) |
| 153 | + self.c3_1 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False) |
| 154 | + self.bn = nn.BatchNorm2d(512) |
| 155 | + self.relu = nn.ReLU(inplace=True) |
| 156 | + self.c3_2 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False) |
| 157 | + |
| 158 | + def forward(self, x): |
| 159 | + x1 = self.c1(x) |
| 160 | + x = self.c3_1(x1) |
| 161 | + x = self.bn(x) |
| 162 | + x = self.relu(x) |
| 163 | + x = self.c3_2(x) |
| 164 | + out = x1 + x |
| 165 | + |
| 166 | + return out |
| 167 | + |
| 168 | + |
| 169 | +class FPA(nn.Module): |
| 170 | + def __init__(self, in_channel, out_channel): |
| 171 | + super(FPA, self).__init__() |
| 172 | + |
| 173 | + self.c15_1 = nn.Conv2d(in_channel, out_channel, kernel_size=15, stride=1, padding=7, bias=False) |
| 174 | + self.c11_1 = nn.Conv2d(in_channel, out_channel, kernel_size=11, stride=1, padding=5, bias=False) |
| 175 | + self.c7_1 = nn.Conv2d(in_channel, out_channel, kernel_size=7, stride=1, padding=3, bias=False) |
| 176 | + self.c3_1 = nn.Conv2d(in_channel, out_channel, kernel_size=3, stride=1, padding=1, bias=False) |
| 177 | + |
| 178 | + self.c15_2 = nn.Conv2d(in_channel, out_channel, kernel_size=15, stride=1, padding=7, bias=False) |
| 179 | + self.c11_2 = nn.Conv2d(in_channel, out_channel, kernel_size=11, stride=1, padding=5, bias=False) |
| 180 | + self.c7_2 = nn.Conv2d(in_channel, out_channel, kernel_size=7, stride=1, padding=3, bias=False) |
| 181 | + self.c3_2 = nn.Conv2d(in_channel, out_channel, kernel_size=3, stride=1, padding=1, bias=False) |
| 182 | + |
| 183 | + self.avg_pool = nn.AdaptiveAvgPool2d(1) |
| 184 | + self.c1_gpb = nn.Conv2d(in_channel, out_channel, kernel_size=1, bias=False) |
| 185 | + |
| 186 | + self.bn = nn.BatchNorm2d(out_channel) |
| 187 | + self.relu = nn.ReLU(inplace=True) |
| 188 | + |
| 189 | + def forward(self, x): |
| 190 | + input_size = x.size()[2:] |
| 191 | + |
| 192 | + x15_1 = self.c15_1(x) |
| 193 | + x15_1 = self.bn(x15_1) |
| 194 | + x15_1 = self.relu(x15_1) |
| 195 | + x15_2 = self.c15_2(x15_1) |
| 196 | + x15_2 = self.bn(x15_2) |
| 197 | + |
| 198 | + x11_1 = self.c11_1(x) |
| 199 | + x11_1 = self.bn(x11_1) |
| 200 | + x11_1 = self.relu(x11_1) |
| 201 | + x11_2 = self.c11_2(x11_1) |
| 202 | + x11_2 = self.bn(x11_2) |
| 203 | + |
| 204 | + x7_1 = self.c7_1(x) |
| 205 | + x7_1 = self.bn(x7_1) |
| 206 | + x7_1 = self.relu(x7_1) |
| 207 | + x7_2 = self.c7_2(x7_1) |
| 208 | + x7_2 = self.bn(x7_2) |
| 209 | + |
| 210 | + x3_1 = self.c3_1(x) |
| 211 | + x3_1 = self.bn(x3_1) |
| 212 | + x3_1 = self.relu(x3_1) |
| 213 | + x3_2 = self.c3_2(x3_1) |
| 214 | + x3_2 = self.bn(x3_2) |
| 215 | + |
| 216 | + x_gp = self.avg_pool(x) |
| 217 | + x_gp = self.c1_gpb(x_gp) |
| 218 | + x_gp = self.bn(x_gp) |
| 219 | + x_gp = F.upsample(x_gp, size=input_size, mode='bilinear') |
| 220 | + |
| 221 | + out = torch.cat([x_gp, x15_2, x11_2, x7_2, x3_2], dim=1) |
| 222 | + return out |
| 223 | + |
| 224 | + |
| 225 | +class CAN(nn.Module): |
| 226 | + |
| 227 | + def __init__(self, block, layers, num_classes=1000): |
| 228 | + super(CAN, self).__init__() |
| 229 | + # self.do = nn.Dropout(p=0.5) |
| 230 | + |
| 231 | + self.inplanes = 64 |
| 232 | + self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, |
| 233 | + bias=False) |
| 234 | + self.bn1 = nn.BatchNorm2d(64) |
| 235 | + self.relu = nn.ReLU(inplace=True) |
| 236 | + self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) |
| 237 | + self.layer1 = self._make_layer(block, 64, layers[0]) |
| 238 | + self.rb1_1 = RefineBlock(256) |
| 239 | + self.layer2 = self._make_layer(block, 128, layers[1], stride=2) |
| 240 | + self.rb2_1 = RefineBlock(512) |
| 241 | + self.layer3 = self._make_layer(block, 256, layers[2], stride=2) |
| 242 | + self.rb3_1 = RefineBlock(1024) |
| 243 | + self.layer4 = self._make_layer(block, 512, layers[3], stride=2) |
| 244 | + self.rb4_1 = RefineBlock(2048) |
| 245 | + # self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) |
| 246 | + # self.fc = nn.Linear(512 * block.expansion, num_classes) |
| 247 | + # only for >=res50 |
| 248 | + |
| 249 | + # self.fpa=FPA(2048,512) |
| 250 | + self.fpa = FPA(512, 512) |
| 251 | + self.rb4_2 = RefineBlock(512 * 5) |
| 252 | + |
| 253 | + self.fuse43 = GAU(512, 512) |
| 254 | + # self.post_proc43 = conv3x3_bn(512*2,512) |
| 255 | + self.rb3_2 = RefineBlock(512) |
| 256 | + self.fuse32 = GAU(512, 512) |
| 257 | + self.rb2_2 = RefineBlock(512) |
| 258 | + # self.post_proc32 = conv3x3_bn(512) |
| 259 | + self.fuse21 = GAU(512, 512) |
| 260 | + self.rb1_2 = RefineBlock(512) |
| 261 | + # self.post_proc21 = conv3x3_bn(512) |
| 262 | + |
| 263 | + self.class_conv = nn.Conv2d(512, num_classes, kernel_size=3, stride=1, |
| 264 | + padding=1, bias=True) |
| 265 | + |
| 266 | + def _make_layer(self, block, planes, blocks, stride=1): |
| 267 | + downsample = None |
| 268 | + if stride != 1 or self.inplanes != planes * block.expansion: |
| 269 | + downsample = nn.Sequential( |
| 270 | + conv1x1(self.inplanes, planes * block.expansion, stride), |
| 271 | + nn.BatchNorm2d(planes * block.expansion), |
| 272 | + ) |
| 273 | + |
| 274 | + layers = [] |
| 275 | + layers.append(block(self.inplanes, planes, stride, downsample)) |
| 276 | + self.inplanes = planes * block.expansion |
| 277 | + for _ in range(1, blocks): |
| 278 | + layers.append(block(self.inplanes, planes)) |
| 279 | + |
| 280 | + return nn.Sequential(*layers) |
| 281 | + |
| 282 | + def forward(self, x): |
| 283 | + ori_size = x.size()[2:] |
| 284 | + x = self.conv1(x) |
| 285 | + x = self.bn1(x) |
| 286 | + x = self.relu(x) |
| 287 | + x = self.maxpool(x) |
| 288 | + |
| 289 | + l1 = self.layer1(x) |
| 290 | + l2 = self.layer2(l1) |
| 291 | + l3 = self.layer3(l2) |
| 292 | + l4 = self.layer4(l3) |
| 293 | + |
| 294 | + l1 = self.rb1_1(l1) |
| 295 | + l2 = self.rb2_1(l2) |
| 296 | + l3 = self.rb3_1(l3) |
| 297 | + l4 = self.rb4_1(l4) |
| 298 | + |
| 299 | + l4 = self.fpa(l4) |
| 300 | + l4 = self.rb4_2(l4) |
| 301 | + |
| 302 | + x_fuse43 = self.fuse43(l4, l3) |
| 303 | + x_fuse43 = self.rb3_2(x_fuse43) |
| 304 | + |
| 305 | + x_fuse32 = self.fuse32(x_fuse43, l2) |
| 306 | + x_fuse32 = self.rb2_2(x_fuse32) |
| 307 | + x_fuse21 = self.fuse21(x_fuse32, l1) |
| 308 | + x_fuse21 = self.rb1_2(x_fuse21) |
| 309 | + |
| 310 | + # x_fuse21=self.do(x_fuse21) |
| 311 | + x = self.class_conv(x_fuse21) |
| 312 | + x = F.upsample(x, ori_size, mode='bilinear') |
| 313 | + |
| 314 | + return x |
| 315 | + |
| 316 | + |
| 317 | +def CAN18(num_classes, pretrained=False, **kwargs): |
| 318 | + """Constructs a ResNet-18 model. |
| 319 | + Args: |
| 320 | + pretrained (bool): If True, returns a model pre-trained on ImageNet |
| 321 | + """ |
| 322 | + model = CAN(BasicBlock, [2, 2, 2, 2], **kwargs, num_classes=num_classes) |
| 323 | + if pretrained: |
| 324 | + key = '18_imagenet' |
| 325 | + url = models_urls[key] |
| 326 | + model.load_state_dict(maybe_download(key, url), strict=False) |
| 327 | + return model |
| 328 | + |
| 329 | + |
| 330 | +def CAN34(num_classes, pretrained=False, **kwargs): |
| 331 | + """Constructs a ResNet-34 model. |
| 332 | + Args: |
| 333 | + pretrained (bool): If True, returns a model pre-trained on ImageNet |
| 334 | + """ |
| 335 | + model = CAN(BasicBlock, [3, 4, 6, 3], **kwargs, num_classes=num_classes) |
| 336 | + if pretrained: |
| 337 | + key = '34_imagenet' |
| 338 | + url = models_urls[key] |
| 339 | + model.load_state_dict(maybe_download(key, url), strict=False) |
| 340 | + return model |
| 341 | + |
| 342 | + |
| 343 | +def CAN50(num_classes, pretrained=True, **kwargs): |
| 344 | + """Constructs a ResNet-50 model. |
| 345 | + Args: |
| 346 | + pretrained (bool): If True, returns a model pre-trained on ImageNet |
| 347 | + """ |
| 348 | + model = CAN(Bottleneck, [3, 4, 6, 3], **kwargs, num_classes=num_classes) |
| 349 | + if pretrained: |
| 350 | + key = '50_imagenet' |
| 351 | + url = models_urls[key] |
| 352 | + model.load_state_dict(maybe_download(key, url), strict=False) |
| 353 | + print("load imagenet res50") |
| 354 | + return model |
| 355 | + |
| 356 | + |
| 357 | +def CAN101(num_classes, pretrained=False, **kwargs): |
| 358 | + """Constructs a ResNet-101 model. |
| 359 | + Args: |
| 360 | + pretrained (bool): If True, returns a model pre-trained on ImageNet |
| 361 | + """ |
| 362 | + model = CAN(Bottleneck, [3, 4, 23, 3], **kwargs, num_classes=num_classes) |
| 363 | + if pretrained: |
| 364 | + key = '101_imagenet' |
| 365 | + url = models_urls[key] |
| 366 | + model.load_state_dict(maybe_download(key, url), strict=False) |
| 367 | + return model |
| 368 | + |
| 369 | + |
| 370 | +def CAN152(num_classes, pretrained=False, **kwargs): |
| 371 | + """Constructs a ResNet-152 model. |
| 372 | + Args: |
| 373 | + pretrained (bool): If True, returns a model pre-trained on ImageNet |
| 374 | + """ |
| 375 | + model = CAN(Bottleneck, [3, 8, 36, 3], **kwargs, num_classes=num_classes) |
| 376 | + if pretrained: |
| 377 | + key = '152_imagenet' |
| 378 | + url = models_urls[key] |
| 379 | + model.load_state_dict(maybe_download(key, url), strict=False) |
| 380 | + return model |
0 commit comments