Skip to content

Files

Latest commit

c6c2b1d · Oct 4, 2020

History

History
This branch is 2352 commits behind lzl124631x/LeetCode:master.

650. 2 Keys Keyboard

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
Oct 4, 2020
Mar 4, 2020
Mar 4, 2020
Mar 4, 2020

Initially on a notepad only one character 'A' is present. You can perform two operations on this notepad for each step:

  1. Copy All: You can copy all the characters present on the notepad (partial copy is not allowed).
  2. Paste: You can paste the characters which are copied last time.

 

Given a number n. You have to get exactly n 'A' on the notepad by performing the minimum number of steps permitted. Output the minimum number of steps to get n 'A'.

Example 1:

Input: 3
Output: 3
Explanation:
Intitally, we have one character 'A'.
In step 1, we use Copy All operation.
In step 2, we use Paste operation to get 'AA'.
In step 3, we use Paste operation to get 'AAA'.

 

Note:

  1. The n will be in the range [1, 1000].

 

Related Topics:
Dynamic Programming

Similar Questions:

Solution 1. DP

Let f(n) be the answer given input n.

f(1) = 0
f(2) = 2 (cp [1*2])
f(3) = 3 (cpp [1*3])
f(4) = 4 (cpcp [2*2]; cppp [1*4])
f(5) = 5 (cpppp [1*5])
f(6) = 5 (cppppp [1*6]; cpcpp [2*3]; cppcp [3*2])
f(7) = 7 (cpppppp [1*7])

So the pattern is that, if n = a * b, then f(a) + b is one option of f(n). We can get all combinations of a and b and f(n) = min(f(a) + b | n = a * b).

f(8) = 6 (0+8 [1*8]; 2+4 [2*4]; 4+2 [4*2])
f(9) = 6 (0+9 [1*9]; 3+3 [3*3])
f(10) = 7 (0+10 [1*10]; 2+5 [2*5]; 5+2 [5*2])
f(11) = 11 (0+11 [1*11])
f(12) = 7 (0+12 [1*12]; 2+6 [2*6]; 4+3[3*4]; 4+3 [4*3]; 5+2 [6*2])
// OJ: https://leetcode.com/problems/2-keys-keyboard/
// Author: github.com/lzl124631x
// Time: O(N^(3/2))
// Space: O(N)
class Solution {
public:
    int minSteps(int n) {
        vector<int> dp(n + 1, INT_MAX);
        dp[1] = 0;
        for (int i = 2; i <= n; ++i) {
            for (int j = 1, end = sqrt(i); j <= end; ++j) {
                if (i % j) continue;
                dp[i] = min({ dp[i], dp[j] + i / j, j == 1 ? INT_MAX : (dp[i / j] + j) });
            }
        }
        return dp[n];
    }
};

Solution 2. DP

For n >= 2, f(n) is at most n, i.e. cppp...ppp (1 c and n - 1 ps)

By observation, if a != 1 is the smallest factor of n, then f(n) = f(n / a) + a.

// OJ: https://leetcode.com/problems/2-keys-keyboard/
// Author: github.com/lzl124631x
// Time: O(N^(3/2))
// Space: O(N)
class Solution {
public:
    int minSteps(int n) {
        vector<int> dp(n + 1, INT_MAX);
        dp[1] = 0;
        for (int i = 2; i <= n; ++i) {
            dp[i] = i;
            for (int j = 2, end = sqrt(i); j <= end; ++j) {
                if (i % j) continue;
                dp[i] = min(dp[i], dp[i / j] + j);
            }
        }
        return dp[n];
    }
};

Solution 3. Greedy (Integer Factorization)

// OJ: https://leetcode.com/problems/2-keys-keyboard/
// Author: github.com/lzl124631x
// Time: O(sqrt(N))
// Space: O(1)
// Ref: https://leetcode.com/problems/2-keys-keyboard/solution/
class Solution {
public:
    int minSteps(int n) {
        int ans = 0, d = 2;
        while (n > 1) {
            while (n % d == 0) {
                ans += d;
                n /= d;
            }
            ++d;
        }
        return ans;
    }
};