Skip to content

Commit 3b7a644

Browse files
committed
Deploy to GitHub Pages: db601a6
1 parent eee174d commit 3b7a644

File tree

11 files changed

+305
-108
lines changed

11 files changed

+305
-108
lines changed

areas/learning-from-visual-experience/index.html

Lines changed: 34 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -139,6 +139,40 @@ <h3 class="text-left tw-text-2xl tw-font-medium max-md:tw-text-xl tw-mt-10">
139139
</div>
140140

141141
<div class="tw-mt-8 tw-gap-10 tw-space-y-reverse sm:tw-columns-1 md:tw-columns-2 lg:tw-columns-3 xl:tw-columns-4 tw-items-start">
142+
<a href="/research/replay-can-provably-increase-forgetting">
143+
<div class="safari-padding-fix">
144+
<!-- reveal-up -->
145+
<!-- tw-rounded-lg -->
146+
<!-- hover:tw-shadow-lg tw-transition-shadow tw-duration-300 -->
147+
<!-- max-lg:tw-max-w-[400px] -->
148+
<div class="tw-flex tw-h-fit tw-break-inside-avoid tw-flex-col tw-gap-2 tw-border-transparent tw-border-2 hover:tw-border-solid hover:tw-border-gray-600 tw-bg-[#f3f3f3b4] tw-p-4 max-lg:tw-w-full tw-overflow-hidden">
149+
<div class="tw-flex tw-place-items-center tw-gap-3">
150+
<!-- tw-rounded-lg -->
151+
<div class="tw-h-[300px] tw-w-full tw-overflow-hidden ">
152+
<img src=/assets/images/papers/replay_can_provably_increase_forgetting.png
153+
class="tw-h-full tw-w-full tw-object-cover"
154+
alt="design"/>
155+
</div>
156+
<!-- tw-transition-transform tw-duration-300 tw-transform hover:tw-scale-110 -->
157+
</div>
158+
<div class="tw-flex tw-flex-col tw-gap-2">
159+
<h3 class="tw-text-xl tw-font-medium tw-mt-4">Replay Can Provably Increase Forgetting</h3>
160+
<p class="tw-text-gray-600 tw-mt-4">
161+
We provide a theoretical analysis of sample replay in over-parameterized continual linear regression, and we show that replay can provably increase forgetting in the worst case even though the network has the capacity to memorize all tasks.
162+
</p>
163+
<p class="tw-mt-4">
164+
Published: 2025-06-04
165+
</p>
166+
<!-- <a href=/research/replay-can-provably-increase-forgetting class="tw-mt-4"> -->
167+
<div class="tw-mt-4">
168+
<span>Learn more</span>
169+
<i class="bi bi-arrow-right"></i>
170+
</div>
171+
<!-- </a> -->
172+
</div>
173+
</div>
174+
</div>
175+
</a>
142176
<a href="/research/memory-storyboard">
143177
<div class="safari-padding-fix">
144178
<!-- reveal-up -->
Loading

index.html

Lines changed: 34 additions & 102 deletions
Original file line numberDiff line numberDiff line change
@@ -227,6 +227,40 @@ <h3 class="text-left tw-text-4xl tw-font-medium max-md:tw-text-2xl">
227227
</div>
228228
<!-- tw-shadow-lg -->
229229
<div class="tw-mt-8 tw-gap-10 tw-space-y-reverse sm:tw-columns-1 md:tw-columns-2 lg:tw-columns-3 xl:tw-columns-4 tw-items-start">
230+
<a href="/research/replay-can-provably-increase-forgetting">
231+
<div class="safari-padding-fix">
232+
<!-- reveal-up -->
233+
<!-- tw-rounded-lg -->
234+
<!-- hover:tw-shadow-lg tw-transition-shadow tw-duration-300 -->
235+
<!-- max-lg:tw-max-w-[400px] -->
236+
<div class="tw-flex tw-h-fit tw-break-inside-avoid tw-flex-col tw-gap-2 tw-border-transparent tw-border-2 hover:tw-border-solid hover:tw-border-gray-600 tw-bg-[#f3f3f3b4] tw-p-4 max-lg:tw-w-full tw-overflow-hidden">
237+
<div class="tw-flex tw-place-items-center tw-gap-3">
238+
<!-- tw-rounded-lg -->
239+
<div class="tw-h-[300px] tw-w-full tw-overflow-hidden ">
240+
<img src=/assets/images/papers/replay_can_provably_increase_forgetting.png
241+
class="tw-h-full tw-w-full tw-object-cover"
242+
alt="design"/>
243+
</div>
244+
<!-- tw-transition-transform tw-duration-300 tw-transform hover:tw-scale-110 -->
245+
</div>
246+
<div class="tw-flex tw-flex-col tw-gap-2">
247+
<h3 class="tw-text-xl tw-font-medium tw-mt-4">Replay Can Provably Increase Forgetting</h3>
248+
<p class="tw-text-gray-600 tw-mt-4">
249+
We provide a theoretical analysis of sample replay in over-parameterized continual linear regression, and we show that replay can provably increase forgetting in the worst case even though the network has the capacity to memorize all tasks.
250+
</p>
251+
<p class="tw-mt-4">
252+
Published: 2025-06-04
253+
</p>
254+
<!-- <a href=/research/replay-can-provably-increase-forgetting class="tw-mt-4"> -->
255+
<div class="tw-mt-4">
256+
<span>Learn more</span>
257+
<i class="bi bi-arrow-right"></i>
258+
</div>
259+
<!-- </a> -->
260+
</div>
261+
</div>
262+
</div>
263+
</a>
230264
<a href="/research/memory-storyboard">
231265
<div class="safari-padding-fix">
232266
<!-- reveal-up -->
@@ -465,108 +499,6 @@ <h3 class="tw-text-xl tw-font-medium tw-mt-4">Reawakening Knowledge: Anticipator
465499
</div>
466500
</div>
467501
</a>
468-
<a href="/research/video-ssl-from-child">
469-
<div class="safari-padding-fix">
470-
<!-- reveal-up -->
471-
<!-- tw-rounded-lg -->
472-
<!-- hover:tw-shadow-lg tw-transition-shadow tw-duration-300 -->
473-
<!-- max-lg:tw-max-w-[400px] -->
474-
<div class="tw-flex tw-h-fit tw-break-inside-avoid tw-flex-col tw-gap-2 tw-border-transparent tw-border-2 hover:tw-border-solid hover:tw-border-gray-600 tw-bg-[#f3f3f3b4] tw-p-4 max-lg:tw-w-full tw-overflow-hidden">
475-
<div class="tw-flex tw-place-items-center tw-gap-3">
476-
<!-- tw-rounded-lg -->
477-
<div class="tw-h-[300px] tw-w-full tw-overflow-hidden ">
478-
<img src=/assets/images/papers/ssl_childs_perspective.webp
479-
class="tw-h-full tw-w-full tw-object-cover"
480-
alt="design"/>
481-
</div>
482-
<!-- tw-transition-transform tw-duration-300 tw-transform hover:tw-scale-110 -->
483-
</div>
484-
<div class="tw-flex tw-flex-col tw-gap-2">
485-
<h3 class="tw-text-xl tw-font-medium tw-mt-4">Self-Supervised Learning of Video Representations from a Child's Perspective</h3>
486-
<p class="tw-text-gray-600 tw-mt-4">
487-
We train self-supervised video models on longitudinal, egocentric headcam recordings collected from a child over a two year period in their early development.
488-
</p>
489-
<p class="tw-mt-4">
490-
Published: 2024-02-01
491-
</p>
492-
<!-- <a href=/research/video-ssl-from-child class="tw-mt-4"> -->
493-
<div class="tw-mt-4">
494-
<span>Learn more</span>
495-
<i class="bi bi-arrow-right"></i>
496-
</div>
497-
<!-- </a> -->
498-
</div>
499-
</div>
500-
</div>
501-
</a>
502-
<a href="/research/learning-forgetting-llms">
503-
<div class="safari-padding-fix">
504-
<!-- reveal-up -->
505-
<!-- tw-rounded-lg -->
506-
<!-- hover:tw-shadow-lg tw-transition-shadow tw-duration-300 -->
507-
<!-- max-lg:tw-max-w-[400px] -->
508-
<div class="tw-flex tw-h-fit tw-break-inside-avoid tw-flex-col tw-gap-2 tw-border-transparent tw-border-2 hover:tw-border-solid hover:tw-border-gray-600 tw-bg-[#f3f3f3b4] tw-p-4 max-lg:tw-w-full tw-overflow-hidden">
509-
<div class="tw-flex tw-place-items-center tw-gap-3">
510-
<!-- tw-rounded-lg -->
511-
<div class="tw-h-[300px] tw-w-full tw-overflow-hidden ">
512-
<img src=/assets/images/papers/learning_and_forgetting_llm.png
513-
class="tw-h-full tw-w-full tw-object-cover"
514-
alt="design"/>
515-
</div>
516-
<!-- tw-transition-transform tw-duration-300 tw-transform hover:tw-scale-110 -->
517-
</div>
518-
<div class="tw-flex tw-flex-col tw-gap-2">
519-
<h3 class="tw-text-xl tw-font-medium tw-mt-4">Learning and Forgetting Unsafe Examples in Large Language Models</h3>
520-
<p class="tw-text-gray-600 tw-mt-4">
521-
We explore the behavior of LLMs finetuned on noisy custom data containing unsafe content and propose a simple filtering algorithm for detecting harmful content based on the phenomenon of selective forgetting.
522-
</p>
523-
<p class="tw-mt-4">
524-
Published: 2023-12-20
525-
</p>
526-
<!-- <a href=/research/learning-forgetting-llms class="tw-mt-4"> -->
527-
<div class="tw-mt-4">
528-
<span>Learn more</span>
529-
<i class="bi bi-arrow-right"></i>
530-
</div>
531-
<!-- </a> -->
532-
</div>
533-
</div>
534-
</div>
535-
</a>
536-
<a href="/research/lifelong-memory">
537-
<div class="safari-padding-fix">
538-
<!-- reveal-up -->
539-
<!-- tw-rounded-lg -->
540-
<!-- hover:tw-shadow-lg tw-transition-shadow tw-duration-300 -->
541-
<!-- max-lg:tw-max-w-[400px] -->
542-
<div class="tw-flex tw-h-fit tw-break-inside-avoid tw-flex-col tw-gap-2 tw-border-transparent tw-border-2 hover:tw-border-solid hover:tw-border-gray-600 tw-bg-[#f3f3f3b4] tw-p-4 max-lg:tw-w-full tw-overflow-hidden">
543-
<div class="tw-flex tw-place-items-center tw-gap-3">
544-
<!-- tw-rounded-lg -->
545-
<div class="tw-h-[300px] tw-w-full tw-overflow-hidden ">
546-
<img src=/assets/images/papers/lifelong_memory.png
547-
class="tw-h-full tw-w-full tw-object-cover"
548-
alt="design"/>
549-
</div>
550-
<!-- tw-transition-transform tw-duration-300 tw-transform hover:tw-scale-110 -->
551-
</div>
552-
<div class="tw-flex tw-flex-col tw-gap-2">
553-
<h3 class="tw-text-xl tw-font-medium tw-mt-4">LifelongMemory: Leveraging LLMs for Answering Queries in Long-form Egocentric Videos</h3>
554-
<p class="tw-text-gray-600 tw-mt-4">
555-
LifelongMemory is a new framework for accessing long-form egocentric videographic memory through natural language question answering and retrieval.
556-
</p>
557-
<p class="tw-mt-4">
558-
Published: 2023-12-07
559-
</p>
560-
<!-- <a href=/research/lifelong-memory class="tw-mt-4"> -->
561-
<div class="tw-mt-4">
562-
<span>Learn more</span>
563-
<i class="bi bi-arrow-right"></i>
564-
</div>
565-
<!-- </a> -->
566-
</div>
567-
</div>
568-
</div>
569-
</a>
570502
</div>
571503
</section>
572504

people/alex-wang/index.html

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22
<html lang="en">
33
<head>
44
<meta property="og:title" content="Alex N. Wang | Agentic Learning AI Lab" />
5-
<meta property="og:description" content="Alex Wang is a PhD student in CILVR advised by Mengye Ren at New York University. He did his MSc with Rich Zemel and BASc in Engineering Science at University of Toronto. He is supported by the NSERC PGS-D scholarship. He is interested in intelligent, large-scale generative vision models. Through generative modeling, he aims to define, build, and evaluate a notion of visual intelligence." />
5+
<meta property="og:description" content="Alex Wang is a PhD student in CILVR at New York University. He did his MSc with Rich Zemel and BASc in Engineering Science at University of Toronto. He is supported by the NSERC PGS-D scholarship. He is interested in intelligent, large-scale generative vision models. Through generative modeling, he aims to define, build, and evaluate a notion of visual intelligence." />
66
<meta property="og:type" content="website" />
77
<meta property="og:url" content="https://agenticlearning.ai/research/alex-wang" />
88
<!--Replace with the current website url-->
@@ -115,7 +115,7 @@ <h3 class="text-left tw-text-4xl tw-font-medium max-md:tw-text-2xl">
115115
PhD Student
116116
</p>
117117
<p class="tw-text-gray-600 tw-mt-4">
118-
Alex Wang is a PhD student in CILVR advised by Mengye Ren at New York University. He did his MSc with Rich Zemel and BASc in Engineering Science at University of Toronto. He is supported by the NSERC PGS-D scholarship. He is interested in intelligent, large-scale generative vision models. Through generative modeling, he aims to define, build, and evaluate a notion of visual intelligence.
118+
Alex Wang is a PhD student in CILVR at New York University. He did his MSc with Rich Zemel and BASc in Engineering Science at University of Toronto. He is supported by the NSERC PGS-D scholarship. He is interested in intelligent, large-scale generative vision models. Through generative modeling, he aims to define, build, and evaluate a notion of visual intelligence.
119119
</p>
120120
<div class="tw-flex tw-mt-8 tw-gap-x-4 tw-min-w-[100px]">
121121
<div class="tw-flex-col person-page-links">

people/mengye-ren/index.html

Lines changed: 12 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -139,6 +139,18 @@ <h3 class="tw-mt-10 text-left tw-text-xl tw-font-medium max-md:tw-text-2xl">
139139
Mengye Ren's Papers
140140
</h3>
141141
<div id="flexContainer" class="tw-mt-4 tw-columns-1 tw-flex tw-flex-wrap tw-gap-y-4 tw-gap-x-4">
142+
<div class="page-item tw-w-full">
143+
<div class="safari-padding-fix">
144+
<!-- <div class="tw-flex tw-h-fit tw-break-inside-avoid tw-flex-col tw-gap-2 tw-bg-[#f3f3f3b4] tw-p-4 max-lg:tw-w-full tw-border-transparent tw-overflow-hidden"> -->
145+
<div class="tw-flex tw-flex-col">
146+
2025-06-04<br/>
147+
<a href="/research/replay-can-provably-increase-forgetting"><span class="tw-italic person-page-links">Replay Can Provably Increase Forgetting.</span></a>
148+
<!-- <br/> -->
149+
<span class="tw-text-gray-600 tw-text-sm">Yasaman Mahdaviyeh, James Lucas, Mengye Ren, Andreas S. Tolias, Richard Zemel, and Toniann Pitassi.</span>
150+
</div>
151+
<!-- </div> -->
152+
</div>
153+
</div>
142154
<div class="page-item tw-w-full">
143155
<div class="safari-padding-fix">
144156
<!-- <div class="tw-flex tw-h-fit tw-break-inside-avoid tw-flex-col tw-gap-2 tw-bg-[#f3f3f3b4] tw-p-4 max-lg:tw-w-full tw-border-transparent tw-overflow-hidden"> -->

research/are-llms-prescient/index.html

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -128,7 +128,7 @@ <h3 class="text-left tw-text-4xl tw-font-medium max-md:tw-text-2xl">
128128
Published: 2024-11-13
129129
</p>
130130
<p class="tw-mt-4">
131-
Venue: CoRR
131+
Venue: The 42nd International Conference on Machine Learning (ICML 2025)
132132
</p>
133133
<div class="tw-flex tw-mt-8 tw-gap-x-4 tw-min-w-[100px]">
134134
<div class="tw-flex-col person-page-links">

research/index.html

Lines changed: 39 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -105,6 +105,45 @@ <h3 class="text-left tw-text-4xl tw-font-medium max-md:tw-text-2xl">
105105

106106
<div id="flexContainer" class="tw-mt-10 tw-flex tw-flex-wrap tw-place-content-center tw-gap-y-4 tw-gap-x-4 tw-justify-around">
107107
<div class="page-item">
108+
<a href="/research/replay-can-provably-increase-forgetting">
109+
<div class="safari-padding-fix">
110+
<!-- tw-rounded-lg -->
111+
<!-- hover:tw-shadow-lg tw-transition-shadow tw-duration-300 -->
112+
<div class="tw-flex tw-h-fit tw-break-inside-avoid tw-flex-col tw-gap-2 tw-bg-[#f3f3f3b4] tw-p-4 max-lg:tw-w-full
113+
tw-border-transparent tw-border-2 hover:tw-border-solid hover:tw-border-gray-600
114+
tw-overflow-hidden">
115+
<div class="tw-flex tw-place-items-center tw-gap-3">
116+
<!-- tw-rounded-lg -->
117+
<div class="tw-h-[300px] tw-w-full tw-overflow-hidden ">
118+
<img src=/assets/images/papers/replay_can_provably_increase_forgetting.png
119+
class="tw-h-full tw-w-full tw-object-cover"
120+
alt="design"/>
121+
</div>
122+
<!-- tw-transition-transform tw-duration-300 tw-transform hover:tw-scale-110 -->
123+
</div>
124+
<div class="tw-flex tw-flex-col tw-gap-2">
125+
<h3 class="tw-text-xl tw-font-medium tw-mt-4">Replay Can Provably Increase Forgetting</h3>
126+
<p class="tw-mt-4">
127+
Authors: Yasaman Mahdaviyeh, James Lucas, Mengye Ren, Andreas S. Tolias, Richard Zemel, and Toniann Pitassi
128+
</p>
129+
<p class="tw-text-gray-600 tw-mt-4">
130+
Continual learning seeks to enable machine learning systems to solve an increasing corpus of tasks sequentially. A critical challenge for continual learning is forgetting, where the performance on previously learned tasks decreases as new tasks are introduced. One of the commonly used techniques to mitigate forgetting, sample replay, has been shown empirically to reduce forgetting by retaining some examples from old tasks and including them in new training episodes. In this work, we provide a theoretical analysis of sample replay in an over-parameterized continual linear regression setting, where each task is given by a linear subspace and with enough replay samples, one would be able to eliminate forgetting. Our analysis focuses on sample replay and highlights the role of the replayed samples and the relationship between task subspaces. Surprisingly, we find that, even in a noiseless setting, forgetting can be non-monotonic with respect to the number of replay samples. We present tasks where replay can be harmful with respect to worst-case settings, and also in distributional settings where replay of randomly selected samples increases forgetting in expectation. We also give empirical evidence that harmful replay is not limited to training with linear models by showing similar behavior for a neural networks equipped with SGD. Through experiments on a commonly used benchmark, we provide additional evidence that, even in seemingly benign scenarios, performance of the replay heavily depends on the choice of replay samples and the relationship between tasks.
131+
</p>
132+
<p class="tw-mt-4">
133+
Published: 2025-06-04
134+
</p>
135+
<div class="tw-mt-4">
136+
<!-- <a href=https://arxiv.org/abs/2506.04377 class="tw-mt-4"> -->
137+
<span>Learn more</span>
138+
<i class="bi bi-arrow-right"></i>
139+
<!-- </a> -->
140+
</div>
141+
</div>
142+
</div>
143+
</div>
144+
</a>
145+
</div>
146+
<div class="page-item">
108147
<a href="/research/memory-storyboard">
109148
<div class="safari-padding-fix">
110149
<!-- tw-rounded-lg -->

0 commit comments

Comments
 (0)