Skip to content

Releases: ai-on-browser/ai-on-browser.github.io

v0.0.23

01 Jan 03:21
Compare
Choose a tag to compare

Improve

  • Add UMAP
  • Add predict function in Sammon, SNE and tSNE
  • Improve LLE process
  • Add Zero-inflated poisson model
  • Add Bilinear, Cubic convolution, Lanczos and Sinc interpolation
  • Add Support vector clustering
  • Add Diffusion map
  • Add trigonometric and hyperbolic function layers

Breaking changes

  • Change FastMap, Isomap, LaplacianEigenmaps, LLE, LSA, MDS and RandomProjection functions to classes
  • Change Latent Dirichlet Allocation model to accept categorical data
  • Change arguments of functions of Isolation forest
  • Change argument type of predict function of SVM, SVR and OCSVM
  • Split PAM and CLARA into separate files

Minor changes

  • predict function of PercentileAnormaly returns boolean values
  • Remove unused variables in A2C model

v0.0.22

25 Dec 02:12
Compare
Choose a tag to compare

Improve

  • Add Fuzzy k-nearest neighbor
  • Add radius neighbor models
  • Add Additive coupling layer and NICE model
  • Add model evaluate functions

Breaking changes

  • Change retun value of predicted function of NAROW and Confidence weighted
  • Change return value of Gaussian process
  • Change argument and return type of Polynomial interpolation
  • Change I/F of VAE

Bug fix

  • weighted method of Lagrange interpolation returns invalid values
  • GAN failed to learn when a dimension of input data is not 2
  • Maximum likelihood returns invalid values
  • rest function of Mountaincar environment returns invalid values

Document

  • Add link to source
  • Improve many JSDoc

v0.0.21

18 Dec 02:32
Compare
Choose a tag to compare

Improve

  • Add Standardizes Major Axis regression and Deming regression
  • Add Huber and Tukey regression
  • Export Graph and Layer class for Neuralnetwork
  • Add Repeated median regression
  • Add Self-training model
  • Add Delaunay interpolation
  • Add Complement, Negation, Universal-set and Selective Naive Bayes
  • Add probability method in NaiveBayes class

Breaking change

  • Fix class name PassingBablock to PassingBablok
  • Split MLP model to classifier and regressor, and specializes in that function
  • AODE, CRF, HMMClassifier returns null if not be estimated for any label
  • Improve NaiveBayes class to accept distribution at constructor
  • Split RandomForest model to classifier and regressor
  • Unify interface of classification model to accept target data as Array of any type

Bug fix

  • Weight of LeastAbsolute and LpNormLinearRegression are using averages

Minor change

  • Change KNN class structure
  • Improve structure of AODE class

v0.0.20

11 Dec 02:14
Compare
Choose a tag to compare

Improve

  • Add Metropolis-Hastings algorithm
  • Add Bayesian Network
  • Add Passing-Bablok method

Breaking changes

  • predict function of FuzzyCMeans, PossibilisticCMeans and SoftKMeans returns 2D array represents each categories

Bug fix

  • A2C throw error sometime
  • Use of Array.sort function in RobustScaler is incorrect

Minor changes

  • Change structure of NeuralNetwork to separate graph structure and layer calculation
  • copy function of NeuralNetwork do not use fromObject function of NeuralNetwork
  • Change boolean operation of Thompson

v0.0.19

04 Dec 01:52
Compare
Choose a tag to compare

Improve

  • Add llh to GPLVM
  • Some argument of kernel/kernelArgs becomes unnecessary
  • Add k-modes and k-prototypes

Breaking changes

  • Change to default export of SplineInterpolation and SmoothingSpline
  • Change to default export of HoltWinters
  • Fix name of JeoJohnson to YeoJohnson
  • Remove env parameter from some unnecessary functions

Bug fix

  • predict function of HoltWinters
  • Parameters of HMM become NaN sometime

Minor changes

  • Change default parameters of GPLVM
  • Change default parameters of PPR
  • Improve initialize of ARMA
  • Fix JSDoc
  • Create command of creating .d.ts file

v0.0.18

27 Nov 03:24
Compare
Choose a tag to compare

Improve

  • Export Complex number class
  • Add CAST clustering
  • Add LMNN classification
  • Add KernelPCA and DualPCA model
  • Add scaling methods (MaxAbsolute, MinMax, Robust, Standardization)
  • Add ddof parameter to variance and std function of Matrix class
  • Add Probabilistic PCA and GPLVM

Breaking changes

  • Change name hierarchy to agglomerative
  • HMM only accept categorical data (same as CRF)
  • Remove kernel computation from PCA

Bug fix

  • predict function of HMMClassifier always returns -1
  • The arguments of callback function for reduce of Matrix class is invalid when axis is -1
  • The calculation of percentile is invalid in some models
  • predict function of KNN, KNNRegression, KNNAnomaly and KNNDensityEstimation only accept one data

Minor changes

  • Change learning rate of CRF
  • Split some algorithms (Lasso and Lagrange interpolation)

Documents

  • Change notation of unnecessary parameters

v0.0.17

20 Nov 02:02
Compare
Choose a tag to compare

Improve

  • Add CRF
  • Change initial values of hessenbergArnoldi function of matrix class
  • Add toScaler function of matrix class
  • row and col of matrix class accept Array of boolean
  • Add LSIF

Breaking change

  • Change arguments of callback function of reduce

Bug fix

  • Failed when apply Array class to predict function in KLIEP, uLSIF, RuLSIF and LSDD
  • fit of KLIEP and RuLSIF is not correct
  • Polynomial kernel of Kernel PCA is incorrect
  • Second and third arguments of callback function of every and some is undefined

v0.0.16

13 Nov 03:30
Compare
Choose a tag to compare

Improve

  • Add Gasser–Müller kernel estimator
  • Add predict function in hierarch clustering methods
  • Add weighted least squares
  • Add block function of Matrix class

Breaking change

  • Make null as unlabeled data of semi-supervised learning models
  • Change slice and remove sliceRow and sliceCol function of Matrix class
  • Change property name of Affinity propagation
  • predict function returns 1 or -1 of some binary classification models

v0.0.15

06 Nov 07:36
Compare
Choose a tag to compare

Improve

  • Add G-means
  • Change to manage optimizer in neuralnetwork
  • Add levinson and householder method in AR model
  • Add VAR model
  • Remove dependency of HoltWinters in ExponentialAverage
  • Separate RNN units from the layer
  • at and set function of Matrix and Tensor accept Array at the first argument

Bug fix

  • Invalid addition in AR model
  • Some models not working because of the arguments of callback function in Matrix changed (Label propagation, Label spreading, Laplacian eigenmaps, Cond layer, Huber layer)
  • predict of Probit returns not Array
  • Polynomial histogram throws error

v0.0.14

30 Oct 02:21
Compare
Choose a tag to compare

Improve

  • Add batch normalization and reverse layer of neuralnetwork
  • Add Incremental PCA
  • Accept Matrix instance in diag function
  • Export Complex number class
  • at function of Tensor throws error when the index is out bounds
  • Unify the parameters of callback of forEach and map
  • Add kron and rank function in Matrix
  • Add ActivationLayer and use in some layers
  • Layer naming done in Layer class
  • Add fromObject and toObject functions in Layer/Matrix class

Breaking change

  • Removing the KMeans dependency of Neural Gas
  • Change the constructor argument of PCA from a function to a string
  • Remove most of dst parameters of functions of Matrix
  • Remove getLayerFromName function from NeuralNetwork
  • Remove get_params and set_params from Layer classes

Bug fix

  • predict function of GBDT and XGBoost throw error
  • sqrt function of Complex returns three values
  • quantile function of Matrix returns invalid values
  • If the kernel parameter of convolute function is not square, the function returns incorrect values