Skip to content

Files

Latest commit

7b8a5a8 · Feb 17, 2025

History

History

2629-function-composition

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
Feb 17, 2025
Feb 17, 2025
Feb 17, 2025
Feb 17, 2025

Easy Solution Notes

Given an array of functions [f1, f2, f3, ..., fn], return a new function fn that is the function composition of the array of functions.

The function composition of [f(x), g(x), h(x)] is fn(x) = f(g(h(x))).

The function composition of an empty list of functions is the identity function f(x) = x.

You may assume each function in the array accepts one integer as input and returns one integer as output.

Example 1:

Input: functions = [x => x + 1, x => x * x, x => 2 * x], x = 4
Output: 65
Explanation:
Evaluating from right to left ...
Starting with x = 4.
2 * (4) = 8
(8) * (8) = 64
(64) + 1 = 65

Example 2:

Input: functions = [x => 10 * x, x => 10 * x, x => 10 * x], x = 1
Output: 1000
Explanation:
Evaluating from right to left ...
10 * (1) = 10
10 * (10) = 100
10 * (100) = 1000

Example 3:

Input: functions = [], x = 42
Output: 42
Explanation:
The composition of zero functions is the identity function

Constraints:

  • -1000 <= x <= 1000
  • 0 <= functions.length <= 1000
  • all functions accept and return a single integer