|
311 | 311 | "cell_type": "markdown",
|
312 | 312 | "metadata": {},
|
313 | 313 | "source": [
|
314 |
| - "`make_layer` need `layer_num` argument - number of layer." |
| 314 | + "`make_layer` need `layer_num` argument - number of layer. \n", |
| 315 | + "`make_layer` separated with `make_body` - it can be one piece." |
315 | 316 | ]
|
316 | 317 | },
|
317 | 318 | {
|
|
372 | 373 | "### Body"
|
373 | 374 | ]
|
374 | 375 | },
|
375 |
| - { |
376 |
| - "attachments": {}, |
377 |
| - "cell_type": "markdown", |
378 |
| - "metadata": {}, |
379 |
| - "source": [ |
380 |
| - "`make_body` needs `cfg.make_layer` initialized. As default - `make_layer`. It can be changed." |
381 |
| - ] |
382 |
| - }, |
383 | 376 | {
|
384 | 377 | "cell_type": "code",
|
385 | 378 | "execution_count": null,
|
386 | 379 | "metadata": {},
|
387 |
| - "outputs": [], |
| 380 | + "outputs": [ |
| 381 | + { |
| 382 | + "data": { |
| 383 | + "text/plain": [ |
| 384 | + "Sequential(\n", |
| 385 | + " (l_0): Sequential(\n", |
| 386 | + " (bl_0): YaBasicBlock(\n", |
| 387 | + " (convs): Sequential(\n", |
| 388 | + " (conv_0): ConvBnAct(\n", |
| 389 | + " (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", |
| 390 | + " (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
| 391 | + " (act_fn): Mish(inplace=True)\n", |
| 392 | + " )\n", |
| 393 | + " (conv_1): ConvBnAct(\n", |
| 394 | + " (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", |
| 395 | + " (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
| 396 | + " )\n", |
| 397 | + " )\n", |
| 398 | + " (merge): Mish(inplace=True)\n", |
| 399 | + " )\n", |
| 400 | + " (bl_1): YaBasicBlock(\n", |
| 401 | + " (convs): Sequential(\n", |
| 402 | + " (conv_0): ConvBnAct(\n", |
| 403 | + " (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", |
| 404 | + " (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
| 405 | + " (act_fn): Mish(inplace=True)\n", |
| 406 | + " )\n", |
| 407 | + " (conv_1): ConvBnAct(\n", |
| 408 | + " (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", |
| 409 | + " (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
| 410 | + " )\n", |
| 411 | + " )\n", |
| 412 | + " (merge): Mish(inplace=True)\n", |
| 413 | + " )\n", |
| 414 | + " )\n", |
| 415 | + " (l_1): Sequential(\n", |
| 416 | + " (bl_0): YaBasicBlock(\n", |
| 417 | + " (reduce): ConvBnAct(\n", |
| 418 | + " (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(2, 2), bias=False)\n", |
| 419 | + " (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
| 420 | + " (act_fn): ReLU(inplace=True)\n", |
| 421 | + " )\n", |
| 422 | + " (convs): Sequential(\n", |
| 423 | + " (conv_0): ConvBnAct(\n", |
| 424 | + " (conv): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", |
| 425 | + " (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
| 426 | + " (act_fn): Mish(inplace=True)\n", |
| 427 | + " )\n", |
| 428 | + " (conv_1): ConvBnAct(\n", |
| 429 | + " (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", |
| 430 | + " (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
| 431 | + " )\n", |
| 432 | + " )\n", |
| 433 | + " (id_conv): ConvBnAct(\n", |
| 434 | + " (conv): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", |
| 435 | + " (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
| 436 | + " )\n", |
| 437 | + " (merge): Mish(inplace=True)\n", |
| 438 | + " )\n", |
| 439 | + " (bl_1): YaBasicBlock(\n", |
| 440 | + " (convs): Sequential(\n", |
| 441 | + " (conv_0): ConvBnAct(\n", |
| 442 | + " (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", |
| 443 | + " (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
| 444 | + " (act_fn): Mish(inplace=True)\n", |
| 445 | + " )\n", |
| 446 | + " (conv_1): ConvBnAct(\n", |
| 447 | + " (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", |
| 448 | + " (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
| 449 | + " )\n", |
| 450 | + " )\n", |
| 451 | + " (merge): Mish(inplace=True)\n", |
| 452 | + " )\n", |
| 453 | + " )\n", |
| 454 | + " (l_2): Sequential(\n", |
| 455 | + " (bl_0): YaBasicBlock(\n", |
| 456 | + " (reduce): ConvBnAct(\n", |
| 457 | + " (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)\n", |
| 458 | + " (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
| 459 | + " (act_fn): ReLU(inplace=True)\n", |
| 460 | + " )\n", |
| 461 | + " (convs): Sequential(\n", |
| 462 | + " (conv_0): ConvBnAct(\n", |
| 463 | + " (conv): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", |
| 464 | + " (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
| 465 | + " (act_fn): Mish(inplace=True)\n", |
| 466 | + " )\n", |
| 467 | + " (conv_1): ConvBnAct(\n", |
| 468 | + " (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", |
| 469 | + " (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
| 470 | + " )\n", |
| 471 | + " )\n", |
| 472 | + " (id_conv): ConvBnAct(\n", |
| 473 | + " (conv): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", |
| 474 | + " (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
| 475 | + " )\n", |
| 476 | + " (merge): Mish(inplace=True)\n", |
| 477 | + " )\n", |
| 478 | + " (bl_1): YaBasicBlock(\n", |
| 479 | + " (convs): Sequential(\n", |
| 480 | + " (conv_0): ConvBnAct(\n", |
| 481 | + " (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", |
| 482 | + " (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
| 483 | + " (act_fn): Mish(inplace=True)\n", |
| 484 | + " )\n", |
| 485 | + " (conv_1): ConvBnAct(\n", |
| 486 | + " (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", |
| 487 | + " (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
| 488 | + " )\n", |
| 489 | + " )\n", |
| 490 | + " (merge): Mish(inplace=True)\n", |
| 491 | + " )\n", |
| 492 | + " )\n", |
| 493 | + " (l_3): Sequential(\n", |
| 494 | + " (bl_0): YaBasicBlock(\n", |
| 495 | + " (reduce): ConvBnAct(\n", |
| 496 | + " (conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(2, 2), bias=False)\n", |
| 497 | + " (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
| 498 | + " (act_fn): ReLU(inplace=True)\n", |
| 499 | + " )\n", |
| 500 | + " (convs): Sequential(\n", |
| 501 | + " (conv_0): ConvBnAct(\n", |
| 502 | + " (conv): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", |
| 503 | + " (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
| 504 | + " (act_fn): Mish(inplace=True)\n", |
| 505 | + " )\n", |
| 506 | + " (conv_1): ConvBnAct(\n", |
| 507 | + " (conv): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", |
| 508 | + " (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
| 509 | + " )\n", |
| 510 | + " )\n", |
| 511 | + " (id_conv): ConvBnAct(\n", |
| 512 | + " (conv): Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", |
| 513 | + " (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
| 514 | + " )\n", |
| 515 | + " (merge): Mish(inplace=True)\n", |
| 516 | + " )\n", |
| 517 | + " (bl_1): YaBasicBlock(\n", |
| 518 | + " (convs): Sequential(\n", |
| 519 | + " (conv_0): ConvBnAct(\n", |
| 520 | + " (conv): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", |
| 521 | + " (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
| 522 | + " (act_fn): Mish(inplace=True)\n", |
| 523 | + " )\n", |
| 524 | + " (conv_1): ConvBnAct(\n", |
| 525 | + " (conv): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", |
| 526 | + " (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
| 527 | + " )\n", |
| 528 | + " )\n", |
| 529 | + " (merge): Mish(inplace=True)\n", |
| 530 | + " )\n", |
| 531 | + " )\n", |
| 532 | + ")" |
| 533 | + ] |
| 534 | + }, |
| 535 | + "execution_count": null, |
| 536 | + "metadata": {}, |
| 537 | + "output_type": "execute_result" |
| 538 | + } |
| 539 | + ], |
388 | 540 | "source": [
|
389 | 541 | "# collapse_output\n",
|
390 |
| - "# cfg.make_layer = make_layer\n", |
391 |
| - "# body = make_body(cfg)\n", |
392 |
| - "# body" |
| 542 | + "body = make_body(cfg)\n", |
| 543 | + "body" |
393 | 544 | ]
|
394 | 545 | },
|
395 | 546 | {
|
|
618 | 769 | "mc.body.l_0"
|
619 | 770 | ]
|
620 | 771 | },
|
| 772 | + { |
| 773 | + "cell_type": "markdown", |
| 774 | + "metadata": {}, |
| 775 | + "source": [] |
| 776 | + }, |
621 | 777 | {
|
622 | 778 | "cell_type": "markdown",
|
623 | 779 | "metadata": {},
|
|
0 commit comments