|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 3, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [ |
| 8 | + { |
| 9 | + "name": "stdout", |
| 10 | + "output_type": "stream", |
| 11 | + "text": [ |
| 12 | + "COLUMN\tVALUE\tOUTPUT\tPROBABILITY\n", |
| 13 | + "Temp--->Hot--->Rainy--->0.4\n", |
| 14 | + "Temp--->Mild--->Rainy--->0.4\n", |
| 15 | + "Temp--->Cool--->Rainy--->0.2\n", |
| 16 | + "Humidity--->High--->Rainy--->0.6\n", |
| 17 | + "Humidity--->Normal--->Rainy--->0.4\n", |
| 18 | + "Windy--->Low--->Rainy--->0.6\n", |
| 19 | + "Windy--->High--->Rainy--->0.4\n", |
| 20 | + "Cloudy--->Yes--->Rainy--->0.6\n", |
| 21 | + "Cloudy--->No--->Rainy--->0.4\n", |
| 22 | + "Temp--->Hot--->Overcast--->0.5\n", |
| 23 | + "Temp--->Mild--->Overcast--->0.25\n", |
| 24 | + "Temp--->Cool--->Overcast--->0.25\n", |
| 25 | + "Humidity--->High--->Overcast--->0.5\n", |
| 26 | + "Humidity--->Normal--->Overcast--->0.5\n", |
| 27 | + "Windy--->Low--->Overcast--->0.5\n", |
| 28 | + "Windy--->High--->Overcast--->0.5\n", |
| 29 | + "Cloudy--->Yes--->Overcast--->0.5\n", |
| 30 | + "Cloudy--->No--->Overcast--->0.5\n", |
| 31 | + "Temp--->Hot--->Sunny--->0.0\n", |
| 32 | + "Temp--->Mild--->Sunny--->0.6\n", |
| 33 | + "Temp--->Cool--->Sunny--->0.4\n", |
| 34 | + "Humidity--->High--->Sunny--->0.4\n", |
| 35 | + "Humidity--->Normal--->Sunny--->0.6\n", |
| 36 | + "Windy--->Low--->Sunny--->0.6\n", |
| 37 | + "Windy--->High--->Sunny--->0.4\n", |
| 38 | + "Cloudy--->Yes--->Sunny--->0.2\n", |
| 39 | + "Cloudy--->No--->Sunny--->0.8\n", |
| 40 | + "{'Rainy': 5, 'Overcast': 4, 'Sunny': 5}\n", |
| 41 | + "{'Rainy': 0.6162624821683309, 'Overcast': 0.17831669044222537, 'Sunny': 0.20542082738944364}\n" |
| 42 | + ] |
| 43 | + } |
| 44 | + ], |
| 45 | + "source": [ |
| 46 | + "import pandas as pd\n", |
| 47 | + "\n", |
| 48 | + "class BayesianClassifier:\n", |
| 49 | + "\n", |
| 50 | + " def __init__(self, path, col):\n", |
| 51 | + " self.cols = {}\n", |
| 52 | + " self.op_cols = {}\n", |
| 53 | + " self.col = col\n", |
| 54 | + " self.data = pd.read_csv(path)\n", |
| 55 | + " self.dataM = self.data\n", |
| 56 | + " self.op = self.data[col]\n", |
| 57 | + " self.data = self.data.drop(col, axis=1)\n", |
| 58 | + " self.total = len(self.dataM)\n", |
| 59 | + " \n", |
| 60 | + " def get_probability_table(self):\n", |
| 61 | + " for i in self.op.unique():\n", |
| 62 | + " self.cols[i] = {}\n", |
| 63 | + " for j in self.data.columns:\n", |
| 64 | + " self.cols[i][j] = {}\n", |
| 65 | + " for k in self.data[j]:\n", |
| 66 | + " if k not in self.cols[i][j]:\n", |
| 67 | + " self.cols[i][j][k] = \"\"\n", |
| 68 | + " dfs = []\n", |
| 69 | + " for i in self.op.unique():\n", |
| 70 | + " for j in self.data.columns:\n", |
| 71 | + " for k in self.data[j].unique():\n", |
| 72 | + " dfs.append(self.dataM[self.dataM[self.col] == i])\n", |
| 73 | + "\n", |
| 74 | + " \n", |
| 75 | + " print(\"COLUMN\\tVALUE\\tOUTPUT\\tPROBABILITY\")\n", |
| 76 | + " for x in self.cols:\n", |
| 77 | + " for y in self.cols[x]:\n", |
| 78 | + " for z in self.cols[x][y]:\n", |
| 79 | + " self.op_cols[x] = len(self.dataM[self.dataM[self.col] == x])\n", |
| 80 | + " total = len(self.dataM[(self.dataM[self.col] == x) & (self.dataM[y])])\n", |
| 81 | + " p = len(self.dataM[(self.dataM[y] == z) & (self.dataM[self.col] == x)]) / total\n", |
| 82 | + " self.cols[x][y][z] = p\n", |
| 83 | + " print(\"{}--->{}--->{}--->{}\".format(y,z,x,p))\n", |
| 84 | + " print(self.op_cols)\n", |
| 85 | + " \n", |
| 86 | + " def classify(self, values):\n", |
| 87 | + " p = {}\n", |
| 88 | + " tot = 0\n", |
| 89 | + " for i in self.op.unique():\n", |
| 90 | + " a = 1\n", |
| 91 | + " for key, value in values.items():\n", |
| 92 | + " a *= self.cols[i][key][value]\n", |
| 93 | + " p[i] = a*self.op_cols[i]/self.total\n", |
| 94 | + " tot += a*self.op_cols[i]/self.total\n", |
| 95 | + " \n", |
| 96 | + " for i in p:\n", |
| 97 | + " p[i] = p[i] / tot\n", |
| 98 | + " \n", |
| 99 | + " return p\n", |
| 100 | + " \n", |
| 101 | + "b = BayesianClassifier(\"new.csv\", \"Weather\")\n", |
| 102 | + "\n", |
| 103 | + "b.get_probability_table()\n", |
| 104 | + "print(b.classify({\"Temp\": 'Mild', \"Windy\": \"Low\", \"Humidity\": \"High\", \"Cloudy\": \"Yes\"}))" |
| 105 | + ] |
| 106 | + }, |
| 107 | + { |
| 108 | + "cell_type": "code", |
| 109 | + "execution_count": null, |
| 110 | + "metadata": {}, |
| 111 | + "outputs": [], |
| 112 | + "source": [] |
| 113 | + } |
| 114 | + ], |
| 115 | + "metadata": { |
| 116 | + "kernelspec": { |
| 117 | + "display_name": "Python 3", |
| 118 | + "language": "python", |
| 119 | + "name": "python3" |
| 120 | + }, |
| 121 | + "language_info": { |
| 122 | + "codemirror_mode": { |
| 123 | + "name": "ipython", |
| 124 | + "version": 3 |
| 125 | + }, |
| 126 | + "file_extension": ".py", |
| 127 | + "mimetype": "text/x-python", |
| 128 | + "name": "python", |
| 129 | + "nbconvert_exporter": "python", |
| 130 | + "pygments_lexer": "ipython3", |
| 131 | + "version": "3.7.3" |
| 132 | + } |
| 133 | + }, |
| 134 | + "nbformat": 4, |
| 135 | + "nbformat_minor": 2 |
| 136 | +} |
0 commit comments