|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 7, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "import numpy as np\n", |
| 10 | + "\n", |
| 11 | + "class GDABinaryClassifier:\n", |
| 12 | + " \n", |
| 13 | + " def fit(self, X, y):\n", |
| 14 | + " self.fi = y.mean()\n", |
| 15 | + " self.u = np.array([ X[y==k].mean(axis=0) for k in [0,1]])\n", |
| 16 | + " X_u = X.copy()\n", |
| 17 | + " for k in [0,1]: X_u[y==k] -= self.u[k]\n", |
| 18 | + " self.E = X_u.T.dot(X_u) / len(y)\n", |
| 19 | + " self.invE = np.linalg.pinv(self.E)\n", |
| 20 | + " return self\n", |
| 21 | + " \n", |
| 22 | + " def predict(self, X):\n", |
| 23 | + " return np.argmax([self.compute_prob(X, i) for i in range(len(self.u))], axis=0)\n", |
| 24 | + " \n", |
| 25 | + " def compute_prob(self, X, i):\n", |
| 26 | + " u, phi = self.u[i], ((self.fi)**i * (1 - self.fi)**(1 - i))\n", |
| 27 | + " return np.exp(-1.0 * np.sum((X-u).dot(self.invE)*(X-u), axis=1)) * phi\n", |
| 28 | + " \n", |
| 29 | + " def score(self, X, y):\n", |
| 30 | + " return (self.predict(X) == y).mean()\n", |
| 31 | + " \n", |
| 32 | + "\n", |
| 33 | + "class GDAClassifier:\n", |
| 34 | + " \n", |
| 35 | + " def fit(self, X, y, epsilon = 1e-10):\n", |
| 36 | + " self.y_classes, y_counts = np.unique(y, return_counts=True)\n", |
| 37 | + " self.phi_y = 1.0 * y_counts/len(y)\n", |
| 38 | + " self.u = np.array([ X[y==k].mean(axis=0) for k in self.y_classes])\n", |
| 39 | + " self.E = self.compute_sigma(X, y)\n", |
| 40 | + " self.E += np.ones_like(self.E) * epsilon # fix zero overflow\n", |
| 41 | + " self.invE = np.linalg.pinv(self.E)\n", |
| 42 | + " return self\n", |
| 43 | + " \n", |
| 44 | + " def compute_sigma(self,X, y):\n", |
| 45 | + " X_u = X.copy().astype('float64')\n", |
| 46 | + " for i in range(len(self.u)):\n", |
| 47 | + " X_u[y==self.y_classes[i]] -= self.u[i]\n", |
| 48 | + " return X_u.T.dot(X_u) / len(y)\n", |
| 49 | + "\n", |
| 50 | + " def predict(self, X):\n", |
| 51 | + " return np.apply_along_axis(self.get_prob, 1, X)\n", |
| 52 | + " \n", |
| 53 | + " def score(self, X, y):\n", |
| 54 | + " return (self.predict(X) == y).mean()\n", |
| 55 | + " \n", |
| 56 | + " def get_prob(self, x):\n", |
| 57 | + " p = np.exp(-1.0 * np.sum((x - self.u).dot(self.invE) * (x - self.u), axis =1)) * self.phi_y\n", |
| 58 | + " return np.argmax(p)" |
| 59 | + ] |
| 60 | + }, |
| 61 | + { |
| 62 | + "cell_type": "code", |
| 63 | + "execution_count": 15, |
| 64 | + "metadata": {}, |
| 65 | + "outputs": [ |
| 66 | + { |
| 67 | + "data": { |
| 68 | + "text/plain": [ |
| 69 | + "0.9666080843585237" |
| 70 | + ] |
| 71 | + }, |
| 72 | + "execution_count": 15, |
| 73 | + "metadata": {}, |
| 74 | + "output_type": "execute_result" |
| 75 | + } |
| 76 | + ], |
| 77 | + "source": [ |
| 78 | + "from sklearn.datasets import load_breast_cancer\n", |
| 79 | + "X,y = load_breast_cancer(return_X_y=True)\n", |
| 80 | + "model = GDABinaryClassifier().fit(X,y)\n", |
| 81 | + "pre = model.predict(X)\n", |
| 82 | + "model.score(X,y)" |
| 83 | + ] |
| 84 | + }, |
| 85 | + { |
| 86 | + "cell_type": "code", |
| 87 | + "execution_count": 9, |
| 88 | + "metadata": {}, |
| 89 | + "outputs": [], |
| 90 | + "source": [ |
| 91 | + "from utils import train_test_split\n", |
| 92 | + "from sklearn.datasets import load_iris\n", |
| 93 | + "X,y = load_iris(return_X_y=True)\n", |
| 94 | + "X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.8)\n", |
| 95 | + "model = GDAClassifier().fit(X_train,y_train)" |
| 96 | + ] |
| 97 | + }, |
| 98 | + { |
| 99 | + "cell_type": "code", |
| 100 | + "execution_count": 11, |
| 101 | + "metadata": {}, |
| 102 | + "outputs": [ |
| 103 | + { |
| 104 | + "data": { |
| 105 | + "text/plain": [ |
| 106 | + "0.9583333333333334" |
| 107 | + ] |
| 108 | + }, |
| 109 | + "execution_count": 11, |
| 110 | + "metadata": {}, |
| 111 | + "output_type": "execute_result" |
| 112 | + } |
| 113 | + ], |
| 114 | + "source": [ |
| 115 | + "model.score(X_test,y_test)" |
| 116 | + ] |
| 117 | + }, |
| 118 | + { |
| 119 | + "cell_type": "code", |
| 120 | + "execution_count": 13, |
| 121 | + "metadata": {}, |
| 122 | + "outputs": [ |
| 123 | + { |
| 124 | + "data": { |
| 125 | + "text/plain": [ |
| 126 | + "0.9494505494505494" |
| 127 | + ] |
| 128 | + }, |
| 129 | + "execution_count": 13, |
| 130 | + "metadata": {}, |
| 131 | + "output_type": "execute_result" |
| 132 | + } |
| 133 | + ], |
| 134 | + "source": [ |
| 135 | + "X,y = load_breast_cancer(return_X_y=True)\n", |
| 136 | + "X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.8)\n", |
| 137 | + "model = GDAClassifier().fit(X_train,y_train)\n", |
| 138 | + "model.score(X_test,y_test)" |
| 139 | + ] |
| 140 | + }, |
| 141 | + { |
| 142 | + "cell_type": "code", |
| 143 | + "execution_count": 14, |
| 144 | + "metadata": {}, |
| 145 | + "outputs": [ |
| 146 | + { |
| 147 | + "data": { |
| 148 | + "text/plain": [ |
| 149 | + "0.9543429844097996" |
| 150 | + ] |
| 151 | + }, |
| 152 | + "execution_count": 14, |
| 153 | + "metadata": {}, |
| 154 | + "output_type": "execute_result" |
| 155 | + } |
| 156 | + ], |
| 157 | + "source": [ |
| 158 | + "from sklearn.datasets import load_digits\n", |
| 159 | + "digits = load_digits()\n", |
| 160 | + "X = digits.data\n", |
| 161 | + "y = digits.target\n", |
| 162 | + "X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.5)\n", |
| 163 | + "model = GDAClassifier().fit(X_train,y_train)\n", |
| 164 | + "model.score(X_test,y_test)" |
| 165 | + ] |
| 166 | + }, |
| 167 | + { |
| 168 | + "cell_type": "code", |
| 169 | + "execution_count": null, |
| 170 | + "metadata": {}, |
| 171 | + "outputs": [], |
| 172 | + "source": [] |
| 173 | + } |
| 174 | + ], |
| 175 | + "metadata": { |
| 176 | + "kernelspec": { |
| 177 | + "display_name": "python3", |
| 178 | + "language": "python", |
| 179 | + "name": "python3" |
| 180 | + }, |
| 181 | + "language_info": { |
| 182 | + "codemirror_mode": { |
| 183 | + "name": "ipython", |
| 184 | + "version": 2 |
| 185 | + }, |
| 186 | + "file_extension": ".py", |
| 187 | + "mimetype": "text/x-python", |
| 188 | + "name": "python", |
| 189 | + "nbconvert_exporter": "python", |
| 190 | + "pygments_lexer": "ipython2", |
| 191 | + "version": "2.7.16" |
| 192 | + } |
| 193 | + }, |
| 194 | + "nbformat": 4, |
| 195 | + "nbformat_minor": 2 |
| 196 | +} |
0 commit comments