Skip to content

Commit 7897e65

Browse files
committed
Tutorials refactoring
ref:d5d147675f6a45512dbcfa0e60855dfe3ae671bd
1 parent d097844 commit 7897e65

29 files changed

+116
-53
lines changed

README.md

+68-33
Original file line numberDiff line numberDiff line change
@@ -1,47 +1,82 @@
1-
# Tutorials
1+
# CatBoost tutorials
22

3-
## Python tutorials
3+
## Basic
44

5-
* Main CatBoost tutorial with base features demonstration:
6-
* [Python Tutorial](catboost_python_tutorial.ipynb)
7-
* This tutorial shows some base cases of using catboost, such as model training, cross-validation and predicting, as well as some useful features like early stopping, snapshot support, feature importances and parameters tuning.
5+
It's better to start CatBoost exploring from this basic tutorials.
86

9-
* CatBoost model analysis tutorials:
10-
* [Object Importance Tutorial](advanced_tutorials/catboost_object_importance_tutorial.ipynb)
11-
* This tutorial shows how to evaluate importances of the train objects for test objects. And with using of importance scores detect noisy train objects.
7+
### Python
128

13-
* [SHAP Values Tutorial](advanced_tutorials/shap_values_tutorial.ipynb)
14-
* This tutorial shows how to use [SHAP](https://github.com/slundberg/shap) python-package to get and visualize feature importances.
9+
* [Python Tutorial](python_tutorial.ipynb)
10+
* This tutorial shows some base cases of using CatBoost, such as model training, cross-validation and predicting, as well as some useful features like early stopping, snapshot support, feature importances and parameters tuning.
11+
* [Python Tutorial with task](python_tutorial_with_tasks.ipynb)
12+
* There are 17 questions in this tutorial. Try answering all of them, this will help you to learn how to use the library.
1513

16-
* CatBoost performance at different competitions:
17-
* [Kaggle Paribas Tutorial](advanced_tutorials/kaggle_paribas.ipynb)
18-
* This tutorial shows how to get to a 9th place on paribas competition with only few lines of code and training a CatBoost model.
14+
### R
1915

20-
* [ML Boot Camp Tutorial](advanced_tutorials/mlbootcamp_v_tutorial.ipynb)
21-
* This is an actual 7th place solution by Mikhail Pershin. Solution is very simple and is based on CatBoost.
16+
* [R Tutorial](r_tutorial.ipynb)
17+
* This tutorial shows how to convert your data to CatBoost Pool, how to train a model and how to make cross validation and parameter tunning.
2218

23-
* CatBoost and TensorFlow:
24-
* [CatBoost & TensorFlow Tutorial](advanced_tutorials/quora_catboost_w2v.ipynb)
25-
* This tutorial shows how to use CatBoost together with TensorFlow if you have text as input data.
19+
### Command line
2620

27-
* CatBoost and CoreML:
28-
* [CatBoost CoreML Tutorial](advanced_tutorials/catboost_coreml_export_tutorial.ipynb)
29-
* This tutorial shows how to convert CatBoost model to CoreML format and use it on an iPhone.
21+
* [Command Line Tutorial](cmdline_tutorial.md)
22+
* This tutorial shows how to train and apply model with the command line tool.
3023

31-
## R tutorials
24+
## Classification
3225

33-
* Main CatBoost tutorial with base features demonstration:
34-
* [R Tutorial](catboost_r_tutorial.ipynb)
35-
* This tutorial shows how to convert your data to CatBoost Pool, how to train a model and how to make cross validation and parameter tunning.
26+
* [Classification Tutorial](classification/classification_tutorial.ipynb)
27+
* Here is an example for CatBoost to solve binary classification and multi-classification problems.
3628

37-
## Command line tutorials
29+
## Ranking
30+
* [Ranking Tutorial](ranking/ranking_tutorial.ipynb)
31+
* CatBoost is learning to rank on Microsoft dataset (msrank).
3832

39-
* Main CatBoost tutorial with base features demonstration:
40-
* [Command Line Tutorial](catboost_cmdline_tutorial.md)
41-
* This tutorial shows how to train and apply model with the command line tool.
33+
## Feature selection
34+
* [Feature selection Tutorial](feature_selection/eval_tutorial.ipynb)
35+
* This tutorial shows how to make feature evaluation with CatBoost and explore learning rate.
4236

43-
## Custom loss tutorial
37+
## Model analysis
4438

45-
* Adding custom per-object error function tutorial:
46-
* [Custom Metrics Tutorial](advanced_tutorials/catboost_custom_metric_tutorial.md)
47-
* This tutorial shows how to add custom per-object metrics.
39+
* [Object Importance Tutorial](model_analysis/object_importance_tutorial.ipynb)
40+
* This tutorial shows how to evaluate importances of the train objects for test objects. And with using of importance scores detect noisy train objects.
41+
42+
* [SHAP Values Tutorial](model_analysis/shap_values_tutorial.ipynb)
43+
* This tutorial shows how to use [SHAP](https://github.com/slundberg/shap) python-package to get and visualize feature importances.
44+
45+
## Custom loss
46+
47+
* [Custom Metrics Tutorial](custom_loss/custom_metric_tutorial.md)
48+
* This tutorial shows how to add custom per-object metrics.
49+
50+
## Apply model
51+
52+
* [CatBoost CoreML Tutorial](apply_model/coreml_export_tutorial.ipynb)
53+
* Explore this tutorial to learn how to convert CatBoost model to CoreML format and use it on any iOS device.
54+
55+
* [Export CatBoost Model as C++ code Tutorial](apply_model/model_export_as_cpp_code_tutorial.md)
56+
* Catboost model could be saved as standalone C++ code.
57+
58+
* [Export CatBoost Model as Python code Tutorial](apply_model/model_export_as_python_code_tutorial.md)
59+
* Catboost model could be saved as standalone Python code.
60+
61+
## Competition examples
62+
63+
* [Kaggle Paribas Competition Tutorial](competition_examples/kaggle_paribas.ipynb)
64+
* This tutorial shows how to get to a 9th place on Kaggle Paribas competition with only few lines of code and training a CatBoost model.
65+
66+
* [ML Boot Camp V Competition Tutorial](competition_examples/mlbootcamp_v_tutorial.ipynb)
67+
* This is an actual 7th place solution by Mikhail Pershin. Solution is very simple and is based on CatBoost.
68+
69+
* [CatBoost & TensorFlow Tutorial](competition_examples/quora_w2v.ipynb)
70+
* This tutorial shows how to use CatBoost together with TensorFlow on Kaggle Quora Question Pairs competition if you have text as input data.
71+
72+
## Events
73+
74+
* [PyData NYC tutorial](events/pydata_nyc_oct_19_2018.ipynb)
75+
* Tutorial from PyData New York, October 19, 2018.
76+
77+
* [PyData LA tutorial](events/pydata_la_oct_21_2018.ipynb)
78+
* Tutorial from PyData Los Angeles, October 21, 2018.
79+
80+
## Tutorials on Russian
81+
82+
* Find tutorials on Russian language on the separate [page](ru/README.md).

advanced_tutorials/catboost_amazon_aws_tutorial.md

-19
This file was deleted.

advanced_tutorials/ru/README.md

-1
This file was deleted.

apply_model/README.md

+10
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,10 @@
1+
# Apply model
2+
3+
* [CatBoost CoreML Tutorial](apply_model/coreml_export_tutorial.ipynb)
4+
* Explore this tutorial to learn how to convert CatBoost model to CoreML format and use it on any iOS device.
5+
6+
* [Export CatBoost Model as C++ code Tutorial](apply_model/model_export_as_cpp_code_tutorial.md)
7+
* Catboost model could be saved as standalone C++ code.
8+
9+
* [Export CatBoost Model as Python code Tutorial](apply_model/model_export_as_python_code_tutorial.md)
10+
* Catboost model could be saved as standalone Python code.

classification/README.md

+4
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,4 @@
1+
# Classification
2+
3+
* [Classification Tutorial](classification/classification_tutorial.ipynb)
4+
* Here is an example for CatBoost to solve binary classification and multi-classification problems.
File renamed without changes.

competition_examples/README.md

+10
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,10 @@
1+
# Competition examples
2+
3+
* [Kaggle Paribas Competition Tutorial](competition_examples/kaggle_paribas.ipynb)
4+
* This tutorial shows how to get to a 9th place on Kaggle Paribas competition with only few lines of code and training a CatBoost model.
5+
6+
* [ML Boot Camp V Competition Tutorial](competition_examples/mlbootcamp_v_tutorial.ipynb)
7+
* This is an actual 7th place solution by Mikhail Pershin. Solution is very simple and is based on CatBoost.
8+
9+
* [CatBoost & TensorFlow Tutorial](competition_examples/quora_w2v.ipynb)
10+
* This tutorial shows how to use CatBoost together with TensorFlow on Kaggle Quora Question Pairs competition if you have text as input data.

custom_loss/README.md

+4
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,4 @@
1+
# Custom loss
2+
3+
* [Custom Metrics Tutorial](custom_loss/custom_metric_tutorial.md)
4+
* This tutorial shows how to add custom per-object metrics.

feature_selection/README.md

+3
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,3 @@
1+
# Feature selection
2+
* [Feature selection Tutorial](feature_selection/eval_tutorial.ipynb)
3+
* This tutorial shows how to make feature evaluation with CatBoost and explore learning rate.

model_analysis/README.md

+7
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,7 @@
1+
# Model analysis
2+
3+
* [Object Importance Tutorial](model_analysis/object_importance_tutorial.ipynb)
4+
* This tutorial shows how to evaluate importances of the train objects for test objects. And with using of importance scores detect noisy train objects.
5+
6+
* [SHAP Values Tutorial](model_analysis/shap_values_tutorial.ipynb)
7+
* This tutorial shows how to use [SHAP](https://github.com/slundberg/shap) python-package to get and visualize feature importances.
File renamed without changes.
File renamed without changes.

ranking/README.md

+3
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,3 @@
1+
# Ranking
2+
* [Ranking Tutorial](ranking/ranking_tutorial.ipynb)
3+
* CatBoost is learning to rank on Microsoft dataset (msrank).

ru/README.md

+7
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,7 @@
1+
# Туториалы CatBoost на русском языке
2+
* [Туториал Kaggle Amazon](kaggle_amazon_tutorial_ru.ipynb)
3+
* Туториал с демонстрацией основного функционала библиотеки на датасете Amazon Employee Access Challenge.
4+
* [ML Session, Новосибирск 2018](ml_session_2018_tutorial_ru.ipynb)
5+
* Туториал c мероприятия [ML Session](https://events.yandex.ru/events/meetings/19-april-2018/) прошедшего 19 Апреля 2018 в Новосибирске.
6+
* [CatBoost и ClickHouse, Москва 2017](catboost_with_clickhouse_tutorial_ru.ipynb)
7+
* Туториал с мероприятия [Опенсорс в Яндексе: CatBoost и ClickHouse](https://events.yandex.ru/events/ClickHouse/30-november-2017/) прошедшего 30 Ноября 2017 в Москве.

0 commit comments

Comments
 (0)