-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
326 lines (274 loc) · 19.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
"""The training script for DDPM model.
"""
import argparse
import logging
import os
import pickle
import warnings
from collections import OrderedDict, defaultdict
import numpy as np
import torch
from aim import Run, num_utils
from tensorboardX import SummaryWriter
from torch.nn.functional import mse_loss, l1_loss
from torch.utils.data import DataLoader
import model
from config import Config
from utils import dict2str, setup_logger, construct_and_save_wbd_plots, \
accumulate_statistics, get_transformation, \
get_optimizer, construct_mask, reverse_transform_candidates, set_seeds
from weatherbench_data import collate_wb_batch, create_datasets, create_dataloaders
from weatherbench_data.utils import reverse_transform, reverse_transform_tensor, prepare_test_data
warnings.filterwarnings("ignore")
if __name__ == "__main__":
set_seeds() # For reproducability.
parser = argparse.ArgumentParser()
parser.add_argument("-c", "--config", type=str, help="JSON file for configuration")
parser.add_argument("-p", "--phase", type=str, choices=["train", "val"],
help="Run either training or validation(inference).", default="train")
parser.add_argument("-gpu", "--gpu_ids", type=str, default=None)
args = parser.parse_args()
configs = Config(args)
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
setup_logger(None, configs.log, "train", screen=True)
setup_logger("val", configs.log, "val")
logger = logging.getLogger("base")
val_logger = logging.getLogger("val")
logger.info(dict2str(configs.get_hyperparameters_as_dict()))
tb_logger = SummaryWriter(log_dir=configs.tb_logger)
aim_logger = Run(run_hash=configs.name, repo='./experiments/aim/', experiment=configs.name)
aim_logger["hparams"] = {"train_min_date": configs.train_min_date, "train_max_date": configs.train_max_date,
"val_min_date": configs.val_min_date, "val_max_date": configs.val_max_date,
"variables": configs.variables, "transformation": configs.transformation,
"tranform_monthly": configs.tranform_monthly, "batch_size": configs.batch_size,
"norm_groups": configs.norm_groups, "dropout": configs.dropout,
"diffusion_loss": configs.diffusion_loss, "init_method": configs.init_method,
"train_schedule": configs.train_schedule, "val_schedule": configs.val_schedule,
"optimizer": configs.optimizer_type, "learning_rate": configs.lr}
transformation = get_transformation(configs.transformation)
train_data, val_data, metadata, transformations = create_datasets(dataroot=configs.dataroot,
name=configs.name,
train_min_date=configs.train_min_date,
train_max_date=configs.train_max_date,
val_min_date=configs.val_min_date,
val_max_date=configs.val_max_date,
variables=configs.variables,
transformation=transformation,
storage_root=configs.experiments_root,
apply_tranform_monthly=configs.tranform_monthly)
logger.info(f"Train size: {len(train_data)}, Val size: {len(val_data)}.")
train_loader, val_loader = create_dataloaders(train_data, val_data, batch_size=configs.batch_size,
use_shuffle=configs.use_shuffle, num_workers=configs.num_workers)
logger.info("Training and Validation dataloaders are ready.")
# Defining the model.
optimizer = get_optimizer(configs.optimizer_type)
diffusion = model.create_model(in_channel=configs.in_channel, out_channel=configs.out_channel,
norm_groups=configs.norm_groups, inner_channel=configs.inner_channel,
channel_multiplier=configs.channel_multiplier, attn_res=configs.attn_res,
res_blocks=configs.res_blocks, dropout=configs.dropout,
diffusion_loss=configs.diffusion_loss, conditional=configs.conditional,
gpu_ids=configs.gpu_ids, distributed=configs.distributed,
init_method=configs.init_method, train_schedule=configs.train_schedule,
train_n_timestep=configs.train_n_timestep,
train_linear_start=configs.train_linear_start,
train_linear_end=configs.train_linear_end,
val_schedule=configs.val_schedule, val_n_timestep=configs.val_n_timestep,
val_linear_start=configs.val_linear_start, val_linear_end=configs.val_linear_end,
finetune_norm=configs.finetune_norm, optimizer=optimizer, amsgrad=configs.amsgrad,
learning_rate=configs.lr, checkpoint=configs.checkpoint,
resume_state=configs.resume_state, phase=configs.phase, height=configs.height)
logger.info("Model initialization is finished.")
current_step, current_epoch = diffusion.begin_step, diffusion.begin_epoch
if configs.resume_state:
logger.info(f"Resuming training from epoch: {current_epoch}, iter: {current_step}.")
logger.info("Starting the training.")
diffusion.set_new_noise_schedule(schedule=configs.train_schedule, n_timestep=configs.train_n_timestep,
linear_start=configs.train_linear_start, linear_end=configs.train_linear_end)
accumulated_statistics = OrderedDict()
# Creating placeholder for storing validation metrics Mean Squared Error, Root MSE, Mean Residual.
val_metrics = OrderedDict({"MSE": 0.0, "RMSE": 0.0, "MAE": 0.0, "MR": 0.0})
# Training.
while current_step < configs.n_iter:
current_epoch += 1
for train_data in train_loader:
current_step += 1
if current_step > configs.n_iter:
break
# Training.
diffusion.feed_data(train_data)
diffusion.optimize_parameters()
# diffusion.lr_scheduler_step() # For lr scheduler updates per iteration.
accumulate_statistics(diffusion.get_current_log(), accumulated_statistics)
# Logging the training information.
if current_step % configs.print_freq == 0:
message = f"Epoch: {current_epoch:5} | Iteration: {current_step:8}"
for metric, values in accumulated_statistics.items():
mean_value = np.mean(values)
message = f"{message} | {metric:s}: {mean_value:.5f}"
tb_logger.add_scalar(f"{metric}/train", mean_value, current_step)
aim_logger.track(num_utils.convert_to_py_number(mean_value), name=metric, step=current_step,
epoch=current_epoch, context={"subset": "train"})
logger.info(message)
# tb_logger.add_scalar(f"learning_rate", diffusion.get_lr(), current_step)
# Visualizing distributions of parameters.
for name, param in diffusion.get_named_parameters():
tb_logger.add_histogram(name, param.clone().cpu().data.numpy(), current_step)
accumulated_statistics = OrderedDict()
# Validation.
if current_step % configs.val_freq == 0:
logger.info("Starting validation.")
idx = 0
result_path = f"{configs.results}/{current_epoch}"
os.makedirs(result_path, exist_ok=True)
diffusion.set_new_noise_schedule(schedule=configs.val_schedule,
n_timestep=configs.val_n_timestep,
linear_start=configs.val_linear_start,
linear_end=configs.val_linear_end)
# A dictionary for storing a list of mean temperatures for each month.
month2mean_temperature = defaultdict(list)
for val_data in val_loader:
idx += 1
diffusion.feed_data(val_data)
diffusion.test(continuous=False) # Continues=False to return only the last timesteps's outcome.
# Computing metrics on vlaidation data.
visuals = diffusion.get_current_visuals()
inv_visuals = reverse_transform(visuals, transformations,
configs.variables, diffusion.get_months(),
configs.tranform_monthly)
# Computing MSE and RMSE on original data.
mse_value = mse_loss(inv_visuals["HR"], inv_visuals["SR"])
val_metrics["MSE"] += mse_value
val_metrics["RMSE"] += torch.sqrt(mse_value)
val_metrics["MAE"] += l1_loss(inv_visuals["HR"], inv_visuals["SR"])
mean_temp_pred = inv_visuals["SR"].mean(axis=[1, 2, 3])
for m, t in zip(diffusion.get_months(), mean_temp_pred):
month2mean_temperature[int(m)].append(t)
# Computing residuals for visualization.
residuals = inv_visuals["SR"] - inv_visuals["HR"]
val_metrics["MR"] += residuals.mean()
if idx % configs.val_vis_freq == 0:
path = f"{result_path}/{current_epoch}_{current_step}_{idx}"
logger.info(f"[{idx//configs.val_vis_freq}] Visualizing and storing some examples.")
sr_candidates = diffusion.generate_multiple_candidates(n=configs.sample_size)
reverse_transform_candidates(sr_candidates, reverse_transform_tensor,
transformations, configs.variables,
"hr", diffusion.get_months(),
configs.tranform_monthly)
mean_candidate = sr_candidates.mean(dim=0) # [B, C, H, W]
std_candidate = sr_candidates.std(dim=0) # [B, C, H, W]
bias = mean_candidate - inv_visuals["HR"]
mean_bias_over_pixels = bias.mean() # Scalar.
std_bias_over_pixels = bias.std() # Scalar.
# Computing min and max measures to set a fixed colorbar for all visualizations.
vmin = min(inv_visuals["HR"][:configs.n_val_vis].min(),
inv_visuals["SR"][:configs.n_val_vis].min(),
inv_visuals["LR"][:configs.n_val_vis].min(),
inv_visuals["INTERPOLATED"][:configs.n_val_vis].min(),
mean_candidate[:configs.n_val_vis].min())
vmax = max(inv_visuals["HR"][:configs.n_val_vis].max(),
inv_visuals["SR"][:configs.n_val_vis].max(),
inv_visuals["LR"][:configs.n_val_vis].max(),
inv_visuals["INTERPOLATED"][:configs.n_val_vis].max(),
mean_candidate[:configs.n_val_vis].max())
# Choosing the first n_val_vis number of samples to visualize.
construct_and_save_wbd_plots(latitude=metadata.hr_lat, longitude=metadata.hr_lon,
data=inv_visuals["HR"][:configs.n_val_vis],
path=f"{path}_hr.png", vmin=vmin, vmax=vmax)
construct_and_save_wbd_plots(latitude=metadata.hr_lat, longitude=metadata.hr_lon,
data=inv_visuals["SR"][:configs.n_val_vis],
path=f"{path}_sr.png", vmin=vmin, vmax=vmax)
construct_and_save_wbd_plots(latitude=metadata.lr_lat, longitude=metadata.lr_lon,
data=inv_visuals["LR"][:configs.n_val_vis],
path=f"{path}_lr.png", vmin=vmin, vmax=vmax)
construct_and_save_wbd_plots(latitude=metadata.hr_lat, longitude=metadata.hr_lon,
data=inv_visuals["INTERPOLATED"][:configs.n_val_vis],
path=f"{path}_interpolated.png", vmin=vmin, vmax=vmax)
construct_and_save_wbd_plots(latitude=metadata.hr_lat, longitude=metadata.hr_lon,
data=construct_mask(residuals[:configs.n_val_vis]),
path=f"{path}_residual.png", vmin=-1, vmax=1,
costline_color="red", cmap="binary",
label="Signum(SR - HR)")
construct_and_save_wbd_plots(latitude=metadata.hr_lat, longitude=metadata.hr_lon,
data=mean_candidate[:configs.n_val_vis],
path=f"{path}_mean_sr.png", vmin=vmin, vmax=vmax)
construct_and_save_wbd_plots(latitude=metadata.hr_lat, longitude=metadata.hr_lon,
data=std_candidate[:configs.n_val_vis],
path=f"{path}_std_sr.png", vmin=0.0, cmap="Greens")
# tb_logger.add_scalar(f"mean_bias_over_pixels/val", mean_bias_over_pixels, current_step)
# tb_logger.add_scalar(f"std_bias_over_pixels/val", std_bias_over_pixels, current_step)
aim_logger.track(num_utils.convert_to_py_number(mean_bias_over_pixels),
name="mean_bias_over_pixels", step=current_step,
epoch=current_epoch, context={"subset": "val"})
aim_logger.track(num_utils.convert_to_py_number(std_bias_over_pixels),
name="std_bias_over_pixels", step=current_step,
epoch=current_epoch, context={"subset": "val"})
# tb_figure = construct_tb_visualization(latitude=metadata.hr_lat, longitude=metadata.hr_lon,
# data=(inv_visuals["INTERPOLATED"][-1].squeeze(),
# inv_visuals["SR"][-1].squeeze(),
# inv_visuals["HR"][-1].squeeze()))
# tb_logger.add_figure(tag=f"Iter_{current_epoch}_{current_step}",
# figure=tb_figure, global_step=idx)
# Validation is finished.
val_metrics["MSE"] /= idx
val_metrics["RMSE"] /= idx
val_metrics["MR"] /= idx
val_metrics["MAE"] /= idx
diffusion.set_new_noise_schedule(schedule=configs.train_schedule,
n_timestep=configs.train_n_timestep,
linear_start=configs.train_linear_start,
linear_end=configs.train_linear_end)
message = f"Epoch: {current_epoch:5} | Iteration: {current_step:8}"
for metric, value in val_metrics.items():
message = f"{message} | {metric:s}: {value:.5f}"
# tb_logger.add_scalar(f"{metric}/val", value, current_step)
aim_logger.track(num_utils.convert_to_py_number(value), name=metric, step=current_step,
epoch=current_epoch, context={"subset": "val"})
val_logger.info(message)
val_metrics = val_metrics.fromkeys(val_metrics, 0.0) # Sets all metrics to zero.
if current_step % configs.save_checkpoint_freq == 0:
logger.info("Saving models and training states.")
diffusion.save_network(current_epoch, current_step)
# Learning rate scheduler step per iteration.
# diffusion.lr_scheduler_step() # For lr scheduler updates per epoch.
tb_logger.close()
aim_logger.close()
logger.info("End of training.")
logger.info("Starting final evaluation on training set.")
train_subset = prepare_test_data(variables=configs.variables, val_min_date=configs.train_subset_min_date,
val_max_date=configs.train_subset_max_date, dataroot=configs.dataroot,
transformations=transformations)
train_loader = DataLoader(train_subset, batch_size=32,
collate_fn=collate_wb_batch,
pin_memory=True, num_workers=2)
diffusion.set_new_noise_schedule(schedule=configs.val_schedule,
n_timestep=configs.val_n_timestep,
linear_start=configs.val_linear_start,
linear_end=configs.val_linear_end)
with torch.no_grad():
idx = 0
train_metrics = OrderedDict({"MSE": 0.0, "RMSE": 0.0, "MAE": 0.0, "MR": 0.0})
for train_data in train_loader:
idx += 1
diffusion.feed_data(train_data)
diffusion.test(continuous=False)
visuals = diffusion.get_current_visuals()
inv_visuals = reverse_transform(visuals, transformations,
configs.variables, diffusion.get_months(),
configs.tranform_monthly)
mse_value = mse_loss(inv_visuals["HR"], inv_visuals["SR"])
train_metrics["MSE"] += mse_value
train_metrics["RMSE"] += torch.sqrt(mse_value)
train_metrics["MR"] += (inv_visuals["SR"] - inv_visuals["HR"]).mean()
train_metrics["MAE"] += l1_loss(inv_visuals["HR"], inv_visuals["SR"])
train_metrics["MSE"] /= idx
train_metrics["RMSE"] /= idx
train_metrics["MR"] /= idx
train_metrics["MAE"] /= idx
message = f"Final evaluation on train set"
for metric, value in train_metrics.items():
message = f"{message} | {metric:s}: {value:.5f}"
logger.info(message)
with open(f"{result_path}/month2mean_temperature.pickle", 'wb') as handle:
pickle.dump(month2mean_temperature, handle, protocol=pickle.HIGHEST_PROTOCOL)
logger.info("End of evaluation.")