comments | difficulty | edit_url | rating | source | tags | |
---|---|---|---|---|---|---|
true |
Medium |
antim |
1382 |
Weekly Contest 171 Q2 |
|
Given 3 positives numbers a
, b
and c
. Return the minimum flips required in some bits of a
and b
to make ( a
OR b
== c
). (bitwise OR operation).
Flip operation consists of change any single bit 1 to 0 or change the bit 0 to 1 in their binary representation.
Example 1:
Input: a = 2, b = 6, c = 5 Output: 3 Explanation: After flips a = 1 , b = 4 , c = 5 such that (a
ORb
==c
)
Example 2:
Input: a = 4, b = 2, c = 7 Output: 1
Example 3:
Input: a = 1, b = 2, c = 3 Output: 0
Constraints:
1 <= a <= 10^9
1 <= b <= 10^9
1 <= c <= 10^9
We can enumerate each bit of the binary representation of
The time complexity is
class Solution:
def minFlips(self, a: int, b: int, c: int) -> int:
ans = 0
for i in range(32):
x, y, z = a >> i & 1, b >> i & 1, c >> i & 1
ans += x + y if z == 0 else int(x == 0 and y == 0)
return ans
class Solution {
public int minFlips(int a, int b, int c) {
int ans = 0;
for (int i = 0; i < 32; ++i) {
int x = a >> i & 1, y = b >> i & 1, z = c >> i & 1;
ans += z == 0 ? x + y : (x == 0 && y == 0 ? 1 : 0);
}
return ans;
}
}
class Solution {
public:
int minFlips(int a, int b, int c) {
int ans = 0;
for (int i = 0; i < 32; ++i) {
int x = a >> i & 1, y = b >> i & 1, z = c >> i & 1;
ans += z == 0 ? x + y : (x == 0 && y == 0 ? 1 : 0);
}
return ans;
}
};