- comments: true
- difficulty: Medium
- edit_url: https://github.com/doocs/leetcode/edit/main/solution/2400-2499/2462.Total%20Cost%20to%20Hire%20K%20Workers/README_EN.md
- rating: 1763
- source: Weekly Contest 318 Q3
- tags:
- Array
- Two Pointers
- Simulation
- Heap (Priority Queue)
You are given a 0-indexed integer array costs
where costs[i]
is the cost of hiring the ith
worker.
You are also given two integers k
and candidates
. We want to hire exactly k
workers according to the following rules:
- You will run
k
sessions and hire exactly one worker in each session. - In each hiring session, choose the worker with the lowest cost from either the first
candidates
workers or the lastcandidates
workers. Break the tie by the smallest index. - If there are fewer than
candidates
workers remaining, choose the worker with the lowest cost among them. Break the tie by the smallest index. - A worker can only be chosen once.
Return the total cost to hire exactly k
workers.
Example 1:
Input: costs = [17,12,10,2,7,2,11,20,8], k = 3, candidates = 4 Output: 11 Explanation: We hire 3 workers in total. The total cost is initially 0. - In the first hiring round we choose the worker from [17,12,10,2,7,2,11,20,8]. The lowest cost is 2, and we break the tie by the smallest index, which is 3. The total cost = 0 + 2 = 2. - In the second hiring round we choose the worker from [17,12,10,7,2,11,20,8]. The lowest cost is 2 (index 4). The total cost = 2 + 2 = 4. - In the third hiring round we choose the worker from [17,12,10,7,11,20,8]. The lowest cost is 7 (index 3). The total cost = 4 + 7 = 11. The total hiring cost is 11.
Example 2:
Input: costs = [1,2,4,1], k = 3, candidates = 3 Output: 4 Explanation: We hire 3 workers in total. The total cost is initially 0. - In the first hiring round we choose the worker from [1,2,4,1]. The lowest cost is 1, and we break the tie by the smallest index, which is 0. The total cost = 0 + 1 = 1. - In the second hiring round we choose the worker from [2,4,1]. The lowest cost is 1 (index 2). The total cost = 1 + 1 = 2. - In the third hiring round there are less than three candidates. We choose the worker from the remaining workers [2,4]. The lowest cost is 2 (index 0). The total cost = 2 + 2 = 4. The total hiring cost is 4.
Constraints:
1 <= costs.length <= 105
1 <= costs[i] <= 105
1 <= k, candidates <= costs.length
First, we check if
Otherwise, we use a min heap
We first add the costs and corresponding indices of the first
Then we perform
After the loop ends, we return the answer.
The time complexity is
class Solution:
def totalCost(self, costs: List[int], k: int, candidates: int) -> int:
n = len(costs)
if candidates * 2 >= n:
return sum(sorted(costs)[:k])
pq = []
for i, c in enumerate(costs[:candidates]):
heappush(pq, (c, i))
for i in range(n - candidates, n):
heappush(pq, (costs[i], i))
heapify(pq)
l, r = candidates, n - candidates - 1
ans = 0
for _ in range(k):
c, i = heappop(pq)
ans += c
if l > r:
continue
if i < l:
heappush(pq, (costs[l], l))
l += 1
else:
heappush(pq, (costs[r], r))
r -= 1
return ans
class Solution {
public long totalCost(int[] costs, int k, int candidates) {
int n = costs.length;
long ans = 0;
if (candidates * 2 >= n) {
Arrays.sort(costs);
for (int i = 0; i < k; ++i) {
ans += costs[i];
}
return ans;
}
PriorityQueue<int[]> pq
= new PriorityQueue<>((a, b) -> a[0] == b[0] ? a[1] - b[1] : a[0] - b[0]);
for (int i = 0; i < candidates; ++i) {
pq.offer(new int[] {costs[i], i});
pq.offer(new int[] {costs[n - i - 1], n - i - 1});
}
int l = candidates, r = n - candidates - 1;
while (k-- > 0) {
var p = pq.poll();
ans += p[0];
if (l > r) {
continue;
}
if (p[1] < l) {
pq.offer(new int[] {costs[l], l++});
} else {
pq.offer(new int[] {costs[r], r--});
}
}
return ans;
}
}
class Solution {
public:
long long totalCost(vector<int>& costs, int k, int candidates) {
int n = costs.size();
if (candidates * 2 > n) {
sort(costs.begin(), costs.end());
return accumulate(costs.begin(), costs.begin() + k, 0LL);
}
using pii = pair<int, int>;
priority_queue<pii, vector<pii>, greater<pii>> pq;
for (int i = 0; i < candidates; ++i) {
pq.emplace(costs[i], i);
pq.emplace(costs[n - i - 1], n - i - 1);
}
long long ans = 0;
int l = candidates, r = n - candidates - 1;
while (k--) {
auto [cost, i] = pq.top();
pq.pop();
ans += cost;
if (l > r) {
continue;
}
if (i < l) {
pq.emplace(costs[l], l++);
} else {
pq.emplace(costs[r], r--);
}
}
return ans;
}
};
func totalCost(costs []int, k int, candidates int) (ans int64) {
n := len(costs)
if candidates*2 > n {
sort.Ints(costs)
for _, x := range costs[:k] {
ans += int64(x)
}
return
}
pq := hp{}
for i, x := range costs[:candidates] {
heap.Push(&pq, pair{x, i})
heap.Push(&pq, pair{costs[n-i-1], n - i - 1})
}
l, r := candidates, n-candidates-1
for ; k > 0; k-- {
p := heap.Pop(&pq).(pair)
ans += int64(p.cost)
if l > r {
continue
}
if p.i < l {
heap.Push(&pq, pair{costs[l], l})
l++
} else {
heap.Push(&pq, pair{costs[r], r})
r--
}
}
return
}
type pair struct{ cost, i int }
type hp []pair
func (h hp) Len() int { return len(h) }
func (h hp) Less(i, j int) bool {
return h[i].cost < h[j].cost || (h[i].cost == h[j].cost && h[i].i < h[j].i)
}
func (h hp) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
func (h *hp) Push(v any)
{ *h = append(*h, v.(pair)) }
func (h *hp) Pop() any {
old := *h
n := len(old)
x := old[n-1]
*h = old[:n-1]
return x
}