-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
88 lines (66 loc) · 2.29 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# IMPORTING LIBRARIES
import pandas as pd
import numpy as np
# IMPORTING DATASET
tsv_file='data/train.tsv'
# CONVERTIVE TSV TO CSV
csv_table=pd.read_table(tsv_file,sep='\t')
csv_table.to_csv('output.csv',index=False)
# READ DATA
df = pd.read_csv('output.csv')
df.head()
# Tags columns is a string. We must convert it to a list.
import ast
df['tags'] = df['tags'].apply(lambda x: ast.literal_eval(x))
df.head()
# IMPORTING ALL THE NECESSART MODELS
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.preprocessing import MultiLabelBinarizer
from sklearn.model_selection import train_test_split
from sklearn.linear_model import SGDClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import LinearSVC
from sklearn.multiclass import OneVsRestClassifier
# OBTAINING y AS TARGET VARIABLE
y = df['tags']
y
# CONVERT Y COLUMN TO CLASSES
multilabel = MultiLabelBinarizer()
y = multilabel.fit_transform(y)
# THE CLASSES
multilabel.classes_
pd.DataFrame(y , columns=multilabel.classes_)
# USING TF-IDF VECTORIZER
tfidf = TfidfVectorizer(analyzer = 'word' , max_features=10000, ngram_range=(1,3) , stop_words='english')
X = tfidf.fit_transform(df['title'])
X.shape , y.shape
# SPLITING DATA INTO TEST AND TRAIN SETS
X_train, X_test, y_train , y_test = train_test_split(X , y, test_size = 0.2, random_state= 0)
tfidf.vocabulary_
# BUILD MODEL
sgd = SGDClassifier()
lr = LogisticRegression(solver = 'lbfgs')
svc = LinearSVC()
# JACCARD SCORE IS USED TO CHECK THE ACCURACY OF A MULTILABLE CLASSIFICATION MODEL
def j_score(y_true, y_pred):
jaccard = np.minimum(y_true, y_pred).sum(axis=1)/np.maximum(y_true, y_pred).sum(axis=1)
return jaccard.mean()*100
def print_score(y_pred,clf):
print("CLF: ",clf.__class__.__name__)
print("Jaccard score: {}".format(j_score(y_test,y_pred)))
print("-----")
for classifier in [sgd,lr, svc]:
clf = OneVsRestClassifier(classifier)
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
print_score(y_pred ,classifier)
# EXPORTING MODEL
import joblib
joblib_file = "tagPredictor.pkl"
joblib.dump(clf, joblib_file)
# Load from file
tagPredictorModel = joblib.load('tagPredictor.pkl')
def getTags(question):
question = tfidf.transform(question)
tags = multilabel.inverse_transform(tagPredictorModel.predict(question))
print(tags)