-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
61 lines (50 loc) · 1.82 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import random
import torch
from torch.utils.data import Dataset
class CorpusDataset(Dataset):
"""
Args:
data (list): List of samples.
padding (int): Index used to pad sequences to the same length.
"""
def __init__(self, data, padding=0, sp_tag=[None, None]):
self.data = data
self.padding = padding
self.SOS_TAG = sp_tag[0]
self.EOS_TAG = sp_tag[1]
def __len__(self):
return len(self.data)
def __getitem__(self, index):
return self.data[index]
def collate_fn(self, datas):
# datas : dict
# sentence
batch = {}
# sentences
_sentence_len = [len(data['sentence']) for data in datas]
_sentence_padded_len = max(_sentence_len)
_sentence = torch.tensor([([self.SOS_TAG] +
data['sentence'] +
[self.EOS_TAG] +
[self.padding]*(_sentence_padded_len - len(data['sentence']))
) for data in datas])
batch['sentence'] = _sentence
batch['sentence_len'] = _sentence_len
return batch
def pad_to_len(arr, padded_len, padding=0):
""" Pad `arr` to `padded_len` with padding if `len(arr) < padded_len`.
If `len(arr) > padded_len`, truncate arr to `padded_len`.
Example:
pad_to_len([1, 2, 3], 5, -1) == [1, 2, 3, -1, -1]
pad_to_len([1, 2, 3, 4, 5, 6], 5, -1) == [1, 2, 3, 4, 5]
Args:
arr (list): List of int.
padded_len (int)
padding (int): Integer used to pad.
"""
arr_len = len(arr)
if arr_len > padded_len:
return arr[:padded_len-1] + [arr[padded_len]]
elif arr_len < padded_len:
return arr + [padding]*(padded_len - arr_len)
return arr