Skip to content

Commit 7532fdd

Browse files
authored
Add files via upload
1 parent 88f7e5c commit 7532fdd

File tree

1 file changed

+185
-0
lines changed

1 file changed

+185
-0
lines changed

XGBoost.ipynb

+185
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,185 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "code",
5+
"execution_count": 21,
6+
"metadata": {},
7+
"outputs": [],
8+
"source": [
9+
"#import library\n",
10+
"\n",
11+
"from sklearn.datasets import load_boston\n",
12+
"import xgboost as xgb\n",
13+
"from sklearn.metrics import mean_squared_error\n",
14+
"import pandas as pd\n",
15+
"import numpy as np"
16+
]
17+
},
18+
{
19+
"cell_type": "code",
20+
"execution_count": 22,
21+
"metadata": {},
22+
"outputs": [
23+
{
24+
"name": "stdout",
25+
"output_type": "stream",
26+
"text": [
27+
"dict_keys(['data', 'target', 'feature_names', 'DESCR', 'filename'])\n"
28+
]
29+
}
30+
],
31+
"source": [
32+
"#load Data\n",
33+
"boston = load_boston()\n",
34+
"print(boston.keys())"
35+
]
36+
},
37+
{
38+
"cell_type": "code",
39+
"execution_count": 23,
40+
"metadata": {},
41+
"outputs": [
42+
{
43+
"name": "stdout",
44+
"output_type": "stream",
45+
"text": [
46+
"(506, 13)\n",
47+
"['CRIM' 'ZN' 'INDUS' 'CHAS' 'NOX' 'RM' 'AGE' 'DIS' 'RAD' 'TAX' 'PTRATIO'\n",
48+
" 'B' 'LSTAT']\n"
49+
]
50+
}
51+
],
52+
"source": [
53+
"print(boston.data.shape)\n",
54+
"print(boston.feature_names)"
55+
]
56+
},
57+
{
58+
"cell_type": "code",
59+
"execution_count": 24,
60+
"metadata": {},
61+
"outputs": [],
62+
"source": [
63+
"#covert data into DataFrame\n",
64+
"data = pd.DataFrame(boston.data)\n",
65+
"data.columns = boston.feature_names"
66+
]
67+
},
68+
{
69+
"cell_type": "code",
70+
"execution_count": 25,
71+
"metadata": {},
72+
"outputs": [],
73+
"source": [
74+
"#set depend and predictor\n",
75+
"data['PRICE'] = boston.target\n",
76+
"data.describe()\n",
77+
"X, y = data.iloc[:,:-1],data.iloc[:,-1]"
78+
]
79+
},
80+
{
81+
"cell_type": "code",
82+
"execution_count": 26,
83+
"metadata": {},
84+
"outputs": [
85+
{
86+
"name": "stderr",
87+
"output_type": "stream",
88+
"text": [
89+
"/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/xgboost/core.py:587: FutureWarning: Series.base is deprecated and will be removed in a future version\n",
90+
" if getattr(data, 'base', None) is not None and \\\n",
91+
"/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/xgboost/core.py:588: FutureWarning: Series.base is deprecated and will be removed in a future version\n",
92+
" data.base is not None and isinstance(data, np.ndarray) \\\n"
93+
]
94+
}
95+
],
96+
"source": [
97+
"#xgb model\n",
98+
"data_dmatrix = xgb.DMatrix(data=X,label=y)"
99+
]
100+
},
101+
{
102+
"cell_type": "code",
103+
"execution_count": 27,
104+
"metadata": {},
105+
"outputs": [],
106+
"source": [
107+
"#spilt data\n",
108+
"from sklearn.model_selection import train_test_split\n",
109+
"\n",
110+
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=123)"
111+
]
112+
},
113+
{
114+
"cell_type": "code",
115+
"execution_count": 28,
116+
"metadata": {},
117+
"outputs": [],
118+
"source": [
119+
"#XGBRegressor model\n",
120+
"xg_reg = xgb.XGBRegressor(objective ='reg:linear', colsample_bytree = 0.3, learning_rate = 0.1,\n",
121+
" max_depth = 5, alpha = 10, n_estimators = 10)"
122+
]
123+
},
124+
{
125+
"cell_type": "code",
126+
"execution_count": 29,
127+
"metadata": {},
128+
"outputs": [
129+
{
130+
"name": "stdout",
131+
"output_type": "stream",
132+
"text": [
133+
"[16:18:05] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n"
134+
]
135+
}
136+
],
137+
"source": [
138+
"#fit model\n",
139+
"xg_reg.fit(X_train,y_train)\n",
140+
"\n",
141+
"preds = xg_reg.predict(X_test)"
142+
]
143+
},
144+
{
145+
"cell_type": "code",
146+
"execution_count": 30,
147+
"metadata": {},
148+
"outputs": [
149+
{
150+
"name": "stdout",
151+
"output_type": "stream",
152+
"text": [
153+
"RMSE: 10.397587\n"
154+
]
155+
}
156+
],
157+
"source": [
158+
"#check error\n",
159+
"rmse = np.sqrt(mean_squared_error(y_test, preds))\n",
160+
"print(\"RMSE: %f\" % (rmse))"
161+
]
162+
}
163+
],
164+
"metadata": {
165+
"kernelspec": {
166+
"display_name": "Python 3",
167+
"language": "python",
168+
"name": "python3"
169+
},
170+
"language_info": {
171+
"codemirror_mode": {
172+
"name": "ipython",
173+
"version": 3
174+
},
175+
"file_extension": ".py",
176+
"mimetype": "text/x-python",
177+
"name": "python",
178+
"nbconvert_exporter": "python",
179+
"pygments_lexer": "ipython3",
180+
"version": "3.7.7"
181+
}
182+
},
183+
"nbformat": 4,
184+
"nbformat_minor": 4
185+
}

0 commit comments

Comments
 (0)