Skip to content

Commit b69d36b

Browse files
authored
Add files via upload
1 parent 5141dbc commit b69d36b

File tree

1 file changed

+137
-0
lines changed

1 file changed

+137
-0
lines changed

LDA.ipynb

Lines changed: 137 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,137 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "code",
5+
"execution_count": 10,
6+
"metadata": {},
7+
"outputs": [],
8+
"source": [
9+
"#import Library\n",
10+
"import numpy as np\n",
11+
"import pandas as pd\n",
12+
"import ssl\n",
13+
"ssl._create_default_https_context = ssl._create_unverified_context\n",
14+
"from sklearn.model_selection import train_test_split\n",
15+
"from sklearn.preprocessing import StandardScaler\n",
16+
"from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA\n",
17+
"from sklearn.ensemble import RandomForestClassifier\n",
18+
"from sklearn.metrics import confusion_matrix\n",
19+
"from sklearn.metrics import accuracy_score"
20+
]
21+
},
22+
{
23+
"cell_type": "code",
24+
"execution_count": 11,
25+
"metadata": {},
26+
"outputs": [],
27+
"source": [
28+
"#import data using url\n",
29+
"url = \"https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data\"\n",
30+
"names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'Class']\n",
31+
"dataset = pd.read_csv(url, names=names)"
32+
]
33+
},
34+
{
35+
"cell_type": "code",
36+
"execution_count": 12,
37+
"metadata": {},
38+
"outputs": [],
39+
"source": [
40+
"\n",
41+
"X = dataset.iloc[:, 0:4].values\n",
42+
"y = dataset.iloc[:, 4].values"
43+
]
44+
},
45+
{
46+
"cell_type": "code",
47+
"execution_count": 13,
48+
"metadata": {},
49+
"outputs": [],
50+
"source": [
51+
"#spilt data\n",
52+
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)"
53+
]
54+
},
55+
{
56+
"cell_type": "code",
57+
"execution_count": 14,
58+
"metadata": {},
59+
"outputs": [],
60+
"source": [
61+
"#scalling data\n",
62+
"sc = StandardScaler()\n",
63+
"X_train = sc.fit_transform(X_train)\n",
64+
"X_test = sc.transform(X_test)"
65+
]
66+
},
67+
{
68+
"cell_type": "code",
69+
"execution_count": 15,
70+
"metadata": {},
71+
"outputs": [],
72+
"source": [
73+
"#LDA Model\n",
74+
"lda = LDA(n_components=1)\n",
75+
"X_train = lda.fit_transform(X_train, y_train)\n",
76+
"X_test = lda.transform(X_test)"
77+
]
78+
},
79+
{
80+
"cell_type": "code",
81+
"execution_count": 16,
82+
"metadata": {},
83+
"outputs": [],
84+
"source": [
85+
"#rendom Forest classifier\n",
86+
"classifier = RandomForestClassifier(max_depth=2, random_state=0)\n",
87+
"\n",
88+
"classifier.fit(X_train, y_train)\n",
89+
"y_pred = classifier.predict(X_test)"
90+
]
91+
},
92+
{
93+
"cell_type": "code",
94+
"execution_count": 17,
95+
"metadata": {},
96+
"outputs": [
97+
{
98+
"name": "stdout",
99+
"output_type": "stream",
100+
"text": [
101+
"[[11 0 0]\n",
102+
" [ 0 13 0]\n",
103+
" [ 0 0 6]]\n",
104+
"Accuracy1.0\n"
105+
]
106+
}
107+
],
108+
"source": [
109+
"#confusion matrix\n",
110+
"cm = confusion_matrix(y_test, y_pred)\n",
111+
"print(cm)\n",
112+
"print('Accuracy' + str(accuracy_score(y_test, y_pred)))"
113+
]
114+
}
115+
],
116+
"metadata": {
117+
"kernelspec": {
118+
"display_name": "Python 3",
119+
"language": "python",
120+
"name": "python3"
121+
},
122+
"language_info": {
123+
"codemirror_mode": {
124+
"name": "ipython",
125+
"version": 3
126+
},
127+
"file_extension": ".py",
128+
"mimetype": "text/x-python",
129+
"name": "python",
130+
"nbconvert_exporter": "python",
131+
"pygments_lexer": "ipython3",
132+
"version": "3.7.7"
133+
}
134+
},
135+
"nbformat": 4,
136+
"nbformat_minor": 4
137+
}

0 commit comments

Comments
 (0)