|
| 1 | +/** |
| 2 | + * Rotated Digits |
| 3 | + * |
| 4 | + * X is a good number if after rotating each digit individually by 180 degrees, |
| 5 | + * we get a valid number that is different from X. Each digit must be rotated - we cannot choose to leave it alone. |
| 6 | + * |
| 7 | + * A number is valid if each digit remains a digit after rotation. 0, 1, and 8 rotate to themselves; 2 and 5 |
| 8 | + * rotate to * each other; 6 and 9 rotate to each other, and the rest of the numbers do not rotate to any |
| 9 | + * other number and become * invalid. |
| 10 | + * |
| 11 | + * Now given a positive number N, how many numbers X from 1 to N are good? |
| 12 | + * |
| 13 | + * Example: |
| 14 | + * Input: 10 |
| 15 | + * Output: 4 |
| 16 | + * |
| 17 | + * Explanation: |
| 18 | + * There are four good numbers in the range [1, 10] : 2, 5, 6, 9. |
| 19 | + * |
| 20 | + * Note that 1 and 10 are not good numbers, since they remain unchanged after rotating. |
| 21 | + * |
| 22 | + * Note: |
| 23 | + * |
| 24 | + * N will be in range [1, 10000]. |
| 25 | + */ |
| 26 | + |
| 27 | +/** |
| 28 | + * @param {number} N |
| 29 | + * @return {number} |
| 30 | + */ |
| 31 | +const rotatedDigits = N => { |
| 32 | + // Count how many n in [1, N] are good. |
| 33 | + let ans = 0; |
| 34 | + |
| 35 | + for (let n = 1; n <= N; ++n) { |
| 36 | + if (isGood(n, false)) ans++; |
| 37 | + } |
| 38 | + |
| 39 | + return ans; |
| 40 | +}; |
| 41 | + |
| 42 | +// Return true if n is good. |
| 43 | +// The flag is true iff we have an occurrence of 2, 5, 6, 9. |
| 44 | +const isGood = (n, flag) => { |
| 45 | + if (n == 0) return flag; |
| 46 | + |
| 47 | + const d = n % 10; |
| 48 | + |
| 49 | + if (d == 3 || d == 4 || d == 7) { |
| 50 | + return false; |
| 51 | + } |
| 52 | + |
| 53 | + if (d == 0 || d == 1 || d == 8) { |
| 54 | + return isGood(Math.floor(n / 10), flag); |
| 55 | + } |
| 56 | + |
| 57 | + return isGood(Math.floor(n / 10), true); |
| 58 | +}; |
| 59 | + |
| 60 | +export { rotatedDigits }; |
0 commit comments