-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathindex.html
86 lines (76 loc) · 3.52 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<style>
body {
font-family: sans-serif;
background-color: rgb(191, 225, 246);
}
ul {
font-family:'Gill Sans', 'Gill Sans MT', Calibri, 'Trebuchet MS', sans-serif
}
h1 {
font-family:'Trebuchet MS', 'Lucida Sans Unicode', 'Lucida Grande', 'Lucida Sans', Arial, sans-serif;
text-shadow: rgb(55, 91, 104) 1px 0 3px;
color: rgb(50, 50, 50);
font-size: min(3em, 7vw);
margin-right: 2em;
}
h2 {
font-family:'Trebuchet MS', 'Lucida Sans Unicode', 'Lucida Grande', 'Lucida Sans', Arial, sans-serif;
color: rgb(50, 50, 50);
font-size: min(3em, 6vw);
}
h3 {
font-family:'Trebuchet MS', 'Lucida Sans Unicode', 'Lucida Grande', 'Lucida Sans', Arial, sans-serif;
color: rgb(50, 50, 50);
font-size: min(3em, 4vw);
}
a {
font-size: min(2em, 5vw);
}
a:link {
color: darkslategray;
}
a:hover {
text-shadow: 1px 1px 1px rgb(71, 71, 199), 0 0 .05em rgb(99, 99, 159), 0 0 0.05em rgb(50, 50, 73);
font-weight: bold;
}
a:visited {
color: rgba(32, 23, 33, 0.335);
}
</style>
<link rel="stylesheet" href="index.css">
<script src="index.js" type="module" defer></script>
</head>
<body>
<h1>Notebooks for Reinforcement Learning: An Introduction second edition</h1>
<div style = "position: fixed; right: .3em; top: 0.3em; font-size: 0.5em; font-weight: bold; background-color: rgb(129, 191, 156); padding: .7em; border: 1px solid rgb(30, 4, 49); border-radius: 20%;">
<a href="https://github.com/jekyllstein/Reinforcement-Learning-Sutton-Barto-Exercise-Solutions">Github<br>Repo</a>
</div>
<h2>Method Summary Notebooks</h2>
<ul>
<li><a href="Tabular-Methods-Summary/tabular_methods_overview_notebook.html">Tabular Methods Overview</a></li>
</ul>
<h2>Chapter Overview Notebooks</h2>
<h3>Part 1: Tabular Methods</h3>
<ul>
<li><a href="Chapter-1/Chapter_1_Introduction_notebook.html">Chapter 1: Introduction</a></li>
<li><a href="Chapter-2/Chapter_2_Multi-armed_Bandits_notebook.html">Chapter 2: Multi-armed Bandits</a></li>
<li><a href="Chapter-3/Chapter_3_Finite_Markov_Decision_Processes_notebook.html">Chapter 3: Finite Markov Decision Processes</a></li>
<li><a href="Chapter-4/Chapter_4_Dynamic_Programming_notebook.html">Chapter 4: Dynamic Programming</a></li>
<li><a href="Chapter-5/Chapter_5_Monte_Carlo_Methods.html">Chapter 5: Monte Carlo Methods</a></li>
<li><a href="Chapter-6/Chapter_6_Temporal_Difference_Learning.html">Chapter 6: Temporal Difference Learning</a></li>
<li><a href="Chapter-7/Chapter_7_n_Step_Bootstrapping.html">Chapter 7: n-Step Bootstrapping</a></li>
<li><a href="Chapter-8/Chapter_8_Planning_&_Learning_with_Tabular_Methods.html">Chapter 8: Planning & Learning with Tabular Methods</a></li>
</ul>
<h3>Part 2: Approximate Solution Methods</h3>
<ul>
<li><a href="Chapter-9/Chapter_9_On-policy_Prediction_with_Approximation.html">Chapter 9: On-policy Prediction with Approximation</a></li>
<li><a href="Chapter-10/Chapter_10_On_policy_Control_with_Approximation.html">Chapter 10: On-policy Control with Approximation</a></li>
<li><a href="Chapter-11/Chapter_11_Off_policy_Methods_with_Approximation.html">Chapter 11:Off-policy Methods with Approximation</a></li>
</ul>
</body>
</html>