|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": { |
| 6 | + "collapsed": true |
| 7 | + }, |
| 8 | + "source": [ |
| 9 | + "# Creación de Nuevas Variables - Feature Extraction" |
| 10 | + ] |
| 11 | + }, |
| 12 | + { |
| 13 | + "cell_type": "code", |
| 14 | + "execution_count": 1, |
| 15 | + "metadata": { |
| 16 | + "collapsed": true |
| 17 | + }, |
| 18 | + "outputs": [], |
| 19 | + "source": [ |
| 20 | + "#from pyspark import SparkContext\n", |
| 21 | + "#sc = SparkContext()\n", |
| 22 | + "#from pyspark.sql import SQLContext\n", |
| 23 | + "#sqlContext=SQLContext(sc)" |
| 24 | + ] |
| 25 | + }, |
| 26 | + { |
| 27 | + "cell_type": "code", |
| 28 | + "execution_count": 2, |
| 29 | + "metadata": { |
| 30 | + "collapsed": true |
| 31 | + }, |
| 32 | + "outputs": [], |
| 33 | + "source": [ |
| 34 | + "bd5 = sqlContext.read.format(\n", |
| 35 | + " \"com.databricks.spark.csv\"\n", |
| 36 | + ").option(\"header\", \"true\").load(\"bd5.csv\", inferSchema=True)\n", |
| 37 | + "sqlContext.registerDataFrameAsTable(bd5, \"bd5\")" |
| 38 | + ] |
| 39 | + }, |
| 40 | + { |
| 41 | + "cell_type": "markdown", |
| 42 | + "metadata": {}, |
| 43 | + "source": [ |
| 44 | + "## Variables Dummy" |
| 45 | + ] |
| 46 | + }, |
| 47 | + { |
| 48 | + "cell_type": "code", |
| 49 | + "execution_count": 3, |
| 50 | + "metadata": { |
| 51 | + "collapsed": true |
| 52 | + }, |
| 53 | + "outputs": [], |
| 54 | + "source": [ |
| 55 | + "bd5 = bd5.withColumn('Horario1',(bd5.Horario==1) \n", |
| 56 | + ").withColumn('Horario2',(bd5.Horario==2) \n", |
| 57 | + ").withColumn('Horario3',(bd5.Horario==3))" |
| 58 | + ] |
| 59 | + }, |
| 60 | + { |
| 61 | + "cell_type": "markdown", |
| 62 | + "metadata": {}, |
| 63 | + "source": [ |
| 64 | + "## Variables Discretizadas Binarias" |
| 65 | + ] |
| 66 | + }, |
| 67 | + { |
| 68 | + "cell_type": "code", |
| 69 | + "execution_count": 4, |
| 70 | + "metadata": { |
| 71 | + "collapsed": false |
| 72 | + }, |
| 73 | + "outputs": [ |
| 74 | + { |
| 75 | + "data": { |
| 76 | + "text/plain": [ |
| 77 | + "Row(YEAR=2016, MONTH=12, DAY_OF_MONTH=1, DAY_OF_WEEK=4, CRS_DEP_TIME=1440, OP_UNIQUE_CARRIER='AA', TAIL_NUM='N011AA', ARR_DELAY=-19.0, DEP_DELAY=-8.0, ORIGIN='LAS', DEST='LAX', DISTANCE=236.0, CANCELLED=0.0, DIVERTED=0.0, CARRIER_DELAY=0.0, WEATHER_DELAY=0.0, NAS_DELAY=0.0, SECURITY_DELAY=0.0, LATE_AIRCRAFT_DELAY=0.0, LogD=2.3729120029701067, Retraso=0, RetrasoNeto=-11.0, Horario=3, Horario1=False, Horario2=False, Horario3=True, SalidaBin=0.0)" |
| 78 | + ] |
| 79 | + }, |
| 80 | + "execution_count": 4, |
| 81 | + "metadata": {}, |
| 82 | + "output_type": "execute_result" |
| 83 | + } |
| 84 | + ], |
| 85 | + "source": [ |
| 86 | + "from pyspark.ml.feature import Binarizer\n", |
| 87 | + "\n", |
| 88 | + "binarizer = Binarizer(threshold=15.0, inputCol='DEP_DELAY', outputCol='SalidaBin')\n", |
| 89 | + "binarizer.transform(bd5).head()\n" |
| 90 | + ] |
| 91 | + }, |
| 92 | + { |
| 93 | + "cell_type": "code", |
| 94 | + "execution_count": 5, |
| 95 | + "metadata": { |
| 96 | + "collapsed": false |
| 97 | + }, |
| 98 | + "outputs": [ |
| 99 | + { |
| 100 | + "name": "stdout", |
| 101 | + "output_type": "stream", |
| 102 | + "text": [ |
| 103 | + "+---------+---------+\n", |
| 104 | + "|DEP_DELAY|SalidaBin|\n", |
| 105 | + "+---------+---------+\n", |
| 106 | + "| -8.0| 0.0|\n", |
| 107 | + "| 6.0| 0.0|\n", |
| 108 | + "| -5.0| 0.0|\n", |
| 109 | + "| -6.0| 0.0|\n", |
| 110 | + "| -5.0| 0.0|\n", |
| 111 | + "| -5.0| 0.0|\n", |
| 112 | + "| -8.0| 0.0|\n", |
| 113 | + "| -6.0| 0.0|\n", |
| 114 | + "| -3.0| 0.0|\n", |
| 115 | + "| -6.0| 0.0|\n", |
| 116 | + "| -11.0| 0.0|\n", |
| 117 | + "| 0.0| 0.0|\n", |
| 118 | + "| 1.0| 0.0|\n", |
| 119 | + "| 2.0| 0.0|\n", |
| 120 | + "| -9.0| 0.0|\n", |
| 121 | + "| 5.0| 0.0|\n", |
| 122 | + "| 7.0| 0.0|\n", |
| 123 | + "| -4.0| 0.0|\n", |
| 124 | + "| -2.0| 0.0|\n", |
| 125 | + "| -7.0| 0.0|\n", |
| 126 | + "+---------+---------+\n", |
| 127 | + "only showing top 20 rows\n", |
| 128 | + "\n" |
| 129 | + ] |
| 130 | + } |
| 131 | + ], |
| 132 | + "source": [ |
| 133 | + "binarizer.transform(bd5).select('DEP_DELAY','SalidaBin').show()" |
| 134 | + ] |
| 135 | + }, |
| 136 | + { |
| 137 | + "cell_type": "markdown", |
| 138 | + "metadata": {}, |
| 139 | + "source": [ |
| 140 | + "## Variables Discretizadas en Buckets" |
| 141 | + ] |
| 142 | + }, |
| 143 | + { |
| 144 | + "cell_type": "code", |
| 145 | + "execution_count": 6, |
| 146 | + "metadata": { |
| 147 | + "collapsed": false, |
| 148 | + "scrolled": true |
| 149 | + }, |
| 150 | + "outputs": [ |
| 151 | + { |
| 152 | + "name": "stdout", |
| 153 | + "output_type": "stream", |
| 154 | + "text": [ |
| 155 | + "+---------+---------+\n", |
| 156 | + "|DEP_DELAY|SalidaCat|\n", |
| 157 | + "+---------+---------+\n", |
| 158 | + "| -8.0| 0.0|\n", |
| 159 | + "| 6.0| 1.0|\n", |
| 160 | + "| -5.0| 0.0|\n", |
| 161 | + "| -6.0| 0.0|\n", |
| 162 | + "| -5.0| 0.0|\n", |
| 163 | + "| -5.0| 0.0|\n", |
| 164 | + "| -8.0| 0.0|\n", |
| 165 | + "| -6.0| 0.0|\n", |
| 166 | + "| -3.0| 0.0|\n", |
| 167 | + "| -6.0| 0.0|\n", |
| 168 | + "| -11.0| 0.0|\n", |
| 169 | + "| 0.0| 1.0|\n", |
| 170 | + "| 1.0| 1.0|\n", |
| 171 | + "| 2.0| 1.0|\n", |
| 172 | + "| -9.0| 0.0|\n", |
| 173 | + "| 5.0| 1.0|\n", |
| 174 | + "| 7.0| 1.0|\n", |
| 175 | + "| -4.0| 0.0|\n", |
| 176 | + "| -2.0| 0.0|\n", |
| 177 | + "| -7.0| 0.0|\n", |
| 178 | + "+---------+---------+\n", |
| 179 | + "only showing top 20 rows\n", |
| 180 | + "\n" |
| 181 | + ] |
| 182 | + } |
| 183 | + ], |
| 184 | + "source": [ |
| 185 | + "from pyspark.ml.feature import Bucketizer\n", |
| 186 | + "bucketizer = Bucketizer(splits=[-float(\"inf\"), 0.0, 15.0, float(\"inf\")],\n", |
| 187 | + " inputCol='DEP_DELAY', outputCol='SalidaCat')\n", |
| 188 | + "bucketizer.transform(bd5).select('DEP_DELAY','SalidaCat').show()\n" |
| 189 | + ] |
| 190 | + }, |
| 191 | + { |
| 192 | + "cell_type": "markdown", |
| 193 | + "metadata": {}, |
| 194 | + "source": [ |
| 195 | + "Versiones más nuevas de Pyspark incluyen otras transformaciones, por ejemplo QuantileDiscretizer" |
| 196 | + ] |
| 197 | + }, |
| 198 | + { |
| 199 | + "cell_type": "markdown", |
| 200 | + "metadata": {}, |
| 201 | + "source": [ |
| 202 | + "## Expansión polinómica de Variables \n", |
| 203 | + "(términos cuadráticos, productos, etc.) " |
| 204 | + ] |
| 205 | + }, |
| 206 | + { |
| 207 | + "cell_type": "code", |
| 208 | + "execution_count": 7, |
| 209 | + "metadata": { |
| 210 | + "collapsed": false |
| 211 | + }, |
| 212 | + "outputs": [ |
| 213 | + { |
| 214 | + "data": { |
| 215 | + "text/plain": [ |
| 216 | + "[Row(DEP_DELAY=-8.0, DISTANCE=236.0, Polyn=DenseVector([-8.0, 64.0, 236.0, -1888.0, 55696.0])),\n", |
| 217 | + " Row(DEP_DELAY=6.0, DISTANCE=236.0, Polyn=DenseVector([6.0, 36.0, 236.0, 1416.0, 55696.0])),\n", |
| 218 | + " Row(DEP_DELAY=-5.0, DISTANCE=236.0, Polyn=DenseVector([-5.0, 25.0, 236.0, -1180.0, 55696.0])),\n", |
| 219 | + " Row(DEP_DELAY=-6.0, DISTANCE=236.0, Polyn=DenseVector([-6.0, 36.0, 236.0, -1416.0, 55696.0])),\n", |
| 220 | + " Row(DEP_DELAY=-5.0, DISTANCE=651.0, Polyn=DenseVector([-5.0, 25.0, 651.0, -3255.0, 423801.0]))]" |
| 221 | + ] |
| 222 | + }, |
| 223 | + "execution_count": 7, |
| 224 | + "metadata": {}, |
| 225 | + "output_type": "execute_result" |
| 226 | + } |
| 227 | + ], |
| 228 | + "source": [ |
| 229 | + "from pyspark.ml.feature import VectorAssembler\n", |
| 230 | + "from pyspark.ml.feature import PolynomialExpansion\n", |
| 231 | + "\n", |
| 232 | + "assembler = VectorAssembler(\n", |
| 233 | + " inputCols=['DEP_DELAY','DISTANCE'],\n", |
| 234 | + " outputCol='features')\n", |
| 235 | + "\n", |
| 236 | + "px = PolynomialExpansion(\n", |
| 237 | + " degree=2, \n", |
| 238 | + " inputCol=\"features\", \n", |
| 239 | + " outputCol=\"Polyn\")\n", |
| 240 | + "\n", |
| 241 | + "bd6 = px.transform(assembler.transform(bd5))\n", |
| 242 | + "\n", |
| 243 | + "bd6.select('DEP_DELAY','DISTANCE','Polyn').head(5)" |
| 244 | + ] |
| 245 | + }, |
| 246 | + { |
| 247 | + "cell_type": "markdown", |
| 248 | + "metadata": {}, |
| 249 | + "source": [ |
| 250 | + "## Estandarización de las variables" |
| 251 | + ] |
| 252 | + }, |
| 253 | + { |
| 254 | + "cell_type": "code", |
| 255 | + "execution_count": 8, |
| 256 | + "metadata": { |
| 257 | + "collapsed": false |
| 258 | + }, |
| 259 | + "outputs": [ |
| 260 | + { |
| 261 | + "name": "stdout", |
| 262 | + "output_type": "stream", |
| 263 | + "text": [ |
| 264 | + "+-------------+--------------------+\n", |
| 265 | + "| features| stdfeatures|\n", |
| 266 | + "+-------------+--------------------+\n", |
| 267 | + "| [-8.0,236.0]|[-0.5061531206197...|\n", |
| 268 | + "| [6.0,236.0]|[-0.2251841350618...|\n", |
| 269 | + "| [-5.0,236.0]|[-0.4459454808573...|\n", |
| 270 | + "| [-6.0,236.0]|[-0.4660146941114...|\n", |
| 271 | + "| [-5.0,651.0]|[-0.4459454808573...|\n", |
| 272 | + "| [-5.0,370.0]|[-0.4459454808573...|\n", |
| 273 | + "| [-8.0,868.0]|[-0.5061531206197...|\n", |
| 274 | + "|[-6.0,1464.0]|[-0.4660146941114...|\n", |
| 275 | + "|[-3.0,1464.0]|[-0.4058070543490...|\n", |
| 276 | + "|[-6.0,1055.0]|[-0.4660146941114...|\n", |
| 277 | + "|[-11.0,255.0]|[-0.5663607603821...|\n", |
| 278 | + "| [0.0,1440.0]|[-0.3455994145866...|\n", |
| 279 | + "| [1.0,641.0]|[-0.3255302013325...|\n", |
| 280 | + "| [2.0,1440.0]|[-0.3054609880783...|\n", |
| 281 | + "|[-9.0,1055.0]|[-0.5262223338738...|\n", |
| 282 | + "| [5.0,1055.0]|[-0.2452533483159...|\n", |
| 283 | + "| [7.0,370.0]|[-0.2051149218077...|\n", |
| 284 | + "|[-4.0,1055.0]|[-0.4258762676032...|\n", |
| 285 | + "|[-2.0,1055.0]|[-0.3857378410949...|\n", |
| 286 | + "|[-7.0,1464.0]|[-0.4860839073656...|\n", |
| 287 | + "+-------------+--------------------+\n", |
| 288 | + "only showing top 20 rows\n", |
| 289 | + "\n" |
| 290 | + ] |
| 291 | + } |
| 292 | + ], |
| 293 | + "source": [ |
| 294 | + "from pyspark.ml.feature import StandardScaler\n", |
| 295 | + "\n", |
| 296 | + "scaler = StandardScaler(inputCol=\"features\", outputCol=\"stdfeatures\",\n", |
| 297 | + " withStd=True, withMean=True)\n", |
| 298 | + "scalerModel = scaler.fit(bd6)\n", |
| 299 | + "bd6std = scalerModel.transform(bd6)\n", |
| 300 | + "\n", |
| 301 | + "bd6std.select('features','stdfeatures').show()" |
| 302 | + ] |
| 303 | + }, |
| 304 | + { |
| 305 | + "cell_type": "markdown", |
| 306 | + "metadata": {}, |
| 307 | + "source": [ |
| 308 | + "## Tranformación manual" |
| 309 | + ] |
| 310 | + }, |
| 311 | + { |
| 312 | + "cell_type": "code", |
| 313 | + "execution_count": 10, |
| 314 | + "metadata": { |
| 315 | + "collapsed": false |
| 316 | + }, |
| 317 | + "outputs": [], |
| 318 | + "source": [ |
| 319 | + "bd7 = bd6.withColumn('DepDelay2',(bd6.DEP_DELAY**2)\n", |
| 320 | + ").withColumn('DepD_Distance',(bd6.DEP_DELAY * bd6.DISTANCE))" |
| 321 | + ] |
| 322 | + }, |
| 323 | + { |
| 324 | + "cell_type": "code", |
| 325 | + "execution_count": null, |
| 326 | + "metadata": { |
| 327 | + "collapsed": true |
| 328 | + }, |
| 329 | + "outputs": [], |
| 330 | + "source": [] |
| 331 | + } |
| 332 | + ], |
| 333 | + "metadata": { |
| 334 | + "anaconda-cloud": {}, |
| 335 | + "kernelspec": { |
| 336 | + "display_name": "Python [default]", |
| 337 | + "language": "python", |
| 338 | + "name": "python3" |
| 339 | + }, |
| 340 | + "language_info": { |
| 341 | + "codemirror_mode": { |
| 342 | + "name": "ipython", |
| 343 | + "version": 3 |
| 344 | + }, |
| 345 | + "file_extension": ".py", |
| 346 | + "mimetype": "text/x-python", |
| 347 | + "name": "python", |
| 348 | + "nbconvert_exporter": "python", |
| 349 | + "pygments_lexer": "ipython3", |
| 350 | + "version": "3.5.2" |
| 351 | + } |
| 352 | + }, |
| 353 | + "nbformat": 4, |
| 354 | + "nbformat_minor": 2 |
| 355 | +} |
0 commit comments