-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path235.lowest-common-ancestor-of-a-binary-search-tree.195741550.ac.cpp
88 lines (83 loc) · 2.29 KB
/
235.lowest-common-ancestor-of-a-binary-search-tree.195741550.ac.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
/*
* @lc app=leetcode id=235 lang=cpp
*
* [235] Lowest Common Ancestor of a Binary Search Tree
*
* https://leetcode.com/problems/lowest-common-ancestor-of-a-binary-search-tree/description/
*
* algorithms
* Easy (42.29%)
* Total Accepted: 238.7K
* Total Submissions: 563.9K
* Testcase Example: '[6,2,8,0,4,7,9,null,null,3,5]\n2\n8'
*
* Given a binary search tree (BST), find the lowest common ancestor (LCA) of
* two given nodes in the BST.
*
* According to the definition of LCA on Wikipedia: “The lowest common ancestor
* is defined between two nodes p and q as the lowest node in T that has both p
* and q as descendants (where we allow a node to be a descendant of itself).”
*
* Given binary search tree: root = [6,2,8,0,4,7,9,null,null,3,5]
*
*
*
* Example 1:
*
*
* Input: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
* Output: 6
* Explanation: The LCA of nodes 2 and 8 is 6.
*
*
* Example 2:
*
*
* Input: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4
* Output: 2
* Explanation: The LCA of nodes 2 and 4 is 2, since a node can be a descendant
* of itself according to the LCA definition.
*
*
*
*
* Note:
*
*
* All of the nodes' values will be unique.
* p and q are different and both values will exist in the BST.
*
*
*/
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool maxLevel;
TreeNode* ans;
bool callme(TreeNode* root, TreeNode* p, TreeNode* q){
if(root == NULL || !maxLevel) return false;
bool temp = false;
if(root == p || root == q)
temp = true;
bool foundLeft = p->val > root->val && q->val > root->val ? false:callme(root->left, p, q);
bool foundRight = p->val < root->val && q->val < root->val ? false:callme(root->right, p, q);
if((foundLeft && foundRight) || ((foundLeft ^ foundRight) && temp)){
ans = root;
maxLevel = false;
}
return foundLeft || foundRight || temp;
}
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
maxLevel = true;
callme(root, p, q);
return ans;
}
};