-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path980.unique-paths-iii.0.java
131 lines (119 loc) · 3.07 KB
/
980.unique-paths-iii.0.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
/*
* @lc app=leetcode id=980 lang=java
*
* [980] Unique Paths III
*
* https://leetcode.com/problems/unique-paths-iii/description/
*
* algorithms
* Hard (72.57%)
* Likes: 453
* Dislikes: 55
* Total Accepted: 27.3K
* Total Submissions: 37.7K
* Testcase Example: '[[1,0,0,0],[0,0,0,0],[0,0,2,-1]]'
*
* On a 2-dimensional grid, there are 4 types of squares:
*
*
* 1 represents the starting square. There is exactly one starting square.
* 2 represents the ending square. There is exactly one ending square.
* 0 represents empty squares we can walk over.
* -1 represents obstacles that we cannot walk over.
*
*
* Return the number of 4-directional walks from the starting square to the
* ending square, that walk over every non-obstacle square exactly once.
*
*
*
*
* Example 1:
*
*
* Input: [[1,0,0,0],[0,0,0,0],[0,0,2,-1]]
* Output: 2
* Explanation: We have the following two paths:
* 1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2)
* 2. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2)
*
*
* Example 2:
*
*
* Input: [[1,0,0,0],[0,0,0,0],[0,0,0,2]]
* Output: 4
* Explanation: We have the following four paths:
* 1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2),(2,3)
* 2. (0,0),(0,1),(1,1),(1,0),(2,0),(2,1),(2,2),(1,2),(0,2),(0,3),(1,3),(2,3)
* 3. (0,0),(1,0),(2,0),(2,1),(2,2),(1,2),(1,1),(0,1),(0,2),(0,3),(1,3),(2,3)
* 4. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2),(2,3)
*
*
* Example 3:
*
*
* Input: [[0,1],[2,0]]
* Output: 0
* Explanation:
* There is no path that walks over every empty square exactly once.
* Note that the starting and ending square can be anywhere in the
* grid.
*
*
*
*
*
*
*
* Note:
*
*
* 1 <= grid.length * grid[0].length <= 20
*
*/
// @lc code=start
class Solution {
int n, m;
HashMap<Integer, Integer> dp;
int p(int x, int y){ return x*m+y; }
int callme(int x, int y, int[][] grid, int cur){
if(x<0 || y<0 || x>=grid.length || y>=grid[0].length || grid[x][y] == -1)
return 0;
if(grid[x][y] == 2)
return cur == 0 ? 1 : 0;
if((cur&(1<<p(x, y))) == 0)
return 0;
if( dp.containsKey(cur*n*m + p(x, y)) )
return dp.get(cur*n*m + p(x, y));
int ret = 0;
cur ^= (1<<p(x, y));
//left
ret += callme(x, y-1, grid, cur);
//right
ret += callme(x, y+1, grid, cur);
//up
ret += callme(x-1, y, grid, cur);
//down
ret += callme(x+1, y, grid, cur);
cur ^= (1<<p(x, y));
dp.put(cur*n*m + p(x, y), ret);
return ret;
}
public int uniquePathsIII(int[][] grid) {
int cur = 0, x = 0, y = 0; n = grid.length; m = grid[0].length;
dp = new HashMap<Integer, Integer>();
for(int i=0; i<n; i++)
for(int j=0; j<m; j++){
if(grid[i][j] == 0) //free
cur ^= (1<<p(i, j));
else if(grid[i][j] == 1){
x = i;
y = j;
}
}
grid[x][y] = -1;
return callme(x+1, y, grid, cur)+callme(x-1, y, grid, cur)+callme(x, y-1, grid, cur)+callme(x, y+1, grid, cur);
}
}
// @lc code=end