-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path980.unique-paths-iii.java
122 lines (112 loc) · 2.74 KB
/
980.unique-paths-iii.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
/*
* @lc app=leetcode id=980 lang=java
*
* [980] Unique Paths III
*
* https://leetcode.com/problems/unique-paths-iii/description/
*
* algorithms
* Hard (72.57%)
* Likes: 453
* Dislikes: 55
* Total Accepted: 27.3K
* Total Submissions: 37.7K
* Testcase Example: '[[1,0,0,0],[0,0,0,0],[0,0,2,-1]]'
*
* On a 2-dimensional grid, there are 4 types of squares:
*
*
* 1 represents the starting square. There is exactly one starting square.
* 2 represents the ending square. There is exactly one ending square.
* 0 represents empty squares we can walk over.
* -1 represents obstacles that we cannot walk over.
*
*
* Return the number of 4-directional walks from the starting square to the
* ending square, that walk over every non-obstacle square exactly once.
*
*
*
*
* Example 1:
*
*
* Input: [[1,0,0,0],[0,0,0,0],[0,0,2,-1]]
* Output: 2
* Explanation: We have the following two paths:
* 1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2)
* 2. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2)
*
*
* Example 2:
*
*
* Input: [[1,0,0,0],[0,0,0,0],[0,0,0,2]]
* Output: 4
* Explanation: We have the following four paths:
* 1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2),(2,3)
* 2. (0,0),(0,1),(1,1),(1,0),(2,0),(2,1),(2,2),(1,2),(0,2),(0,3),(1,3),(2,3)
* 3. (0,0),(1,0),(2,0),(2,1),(2,2),(1,2),(1,1),(0,1),(0,2),(0,3),(1,3),(2,3)
* 4. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2),(2,3)
*
*
* Example 3:
*
*
* Input: [[0,1],[2,0]]
* Output: 0
* Explanation:
* There is no path that walks over every empty square exactly once.
* Note that the starting and ending square can be anywhere in the
* grid.
*
*
*
*
*
*
*
* Note:
*
*
* 1 <= grid.length * grid[0].length <= 20
*
*/
// @lc code=start
class Solution {
int zeros = 0;
private int callme(int x, int y, int[][] grid){
if(x<0 || y<0 || x>=grid.length || y>=grid[0].length || grid[x][y] == -1 || grid[x][y] == 3)
return 0;
if(grid[x][y] == 2)
return zeros == 0 ? 1 : 0;
int ret = 0;
grid[x][y] = 3;
zeros--;
//left
ret += callme(x, y-1, grid);
//right
ret += callme(x, y+1, grid);
//up
ret += callme(x-1, y, grid);
//down
ret += callme(x+1, y, grid);
zeros++;
grid[x][y] = 0;
return ret;
}
public int uniquePathsIII(int[][] grid) {
int x = 0, y = 0;
for(int i=0; i<grid.length; i++)
for(int j=0; j<grid[0].length; j++)
if(grid[i][j] == 0)
zeros++;
else if(grid[i][j] == 1){
x = i;
y = j;
}
grid[x][y] = -1;
return callme(x+1, y, grid)+callme(x-1, y, grid)+callme(x, y-1, grid)+callme(x, y+1, grid);
}
}
// @lc code=end