Skip to content

Commit 38e1046

Browse files
authored
Update README.md
1 parent b04076b commit 38e1046

File tree

1 file changed

+88
-1
lines changed

1 file changed

+88
-1
lines changed

README.md

Lines changed: 88 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1 +1,88 @@
1-
# Python-BasicOperations-and-DataAnalysis
1+
# Python-BasicOperations-and-DataAnalysis
2+
3+
##This repository contains two Notebooks
4+
5+
# Notebook 1: "Python-BasicOperations.ipynb"- Contains Basic Operations with Python Dataframes. This notebook contains the below topics
6+
7+
## Topic 1: Basic Dataframe Reading/Operations
8+
###### Code Block 1.1: Reading the dataframe
9+
###### Code Block 1.2: Getting to know the shape of the dataset (Rows and Columns)
10+
###### Code Block 1.3: Length of dataframe.
11+
###### Code Block 1.4: Getting to know the data type of the dataset
12+
###### Code Block 1.5: Extracting one column from the dataframe and getting to know the data type and the size (of Series)
13+
###### Code Block 1.6: Printing the size of the series
14+
###### Code Block 1.7: Data types for whole dataframe (variables)
15+
###### Code Block 1.8: Working on creating specific indexes
16+
###### Code Block 1.9: Printing the first 5 rows of the dataframe
17+
###### Code Block 1.10: Printing the last 5 rows of the dataframe
18+
###### Code Block 1.11: Displaying the information of the dataframe
19+
###### Code Block 1.12: Extracting all rows from the dataframe with only one column
20+
###### Code Block 1.13: Understanding difference between Series and Dataframe
21+
###### Code Block 1.14: Extracting range of columns. For example all columns from country to right end
22+
###### Code Block 1.15: Selection Based on single index column
23+
###### Code Block 1.16: Selection Based on multiple index columns values
24+
###### Code Block 1.17: Selection Based on multiple index columns values
25+
26+
## Topic 2: Conversion of operations/code from SQL to Python
27+
###### Code Block 2.1: SQL (where clause with single condition)-->Python Code
28+
###### Code Block 2.2: SQL (where clause with multiple conditions)-->Python Code
29+
###### Code Block 2.3: SQL (where clause with multiple conditions using NOT IN)-->Python Code
30+
###### Code Block 2.4: SQL (where clause with order by on single variable)-->Python Code
31+
###### Code Block 2.5: SQL (where clause with order by on multiple variables)-->Python Code
32+
33+
## Topic 3: Data Exploration
34+
###### Code Block 3.1:Checking on various statistics for categorical variables with 1 variable (Series)
35+
###### Code Block 3.2:Checking on various statistics for integer variables with 1 variable (Series)
36+
###### Code Block 3.3:Working on describe method for the whole dataframe which basically consists a mix of numbers and categorical variables
37+
###### Code Block 3.4: Data exploration methods for Series vs Dataframe
38+
###### Code Block 3.5:Checking median of all integer columns in the dataframe
39+
###### Code Block 3.6: Select distinct values of any column
40+
41+
42+
## Topic 4: Creating a new column, calculated columns, cleaning the column names, dropping rows/columns
43+
###### 4.1 Creating a new column with in dataframe
44+
###### 4.2 Printing all the columns from the dataset/Getting to know the column names
45+
###### 4.3 Cleaning the columns
46+
###### 4.4 Converting the data type of the column
47+
###### 4.5 Renaming the column names
48+
###### 4.6 Counting the missing values for each column in the dataset
49+
###### 4.7 Dropping rows and columns that has missing values
50+
###### 4.8 Replacing the missing values with some value (provided with some conditional logic)
51+
###### 4.9 Map funciton
52+
###### 4.10 Writing the final dataset (cleaned) one into csv
53+
54+
## Topic 5: Plotting
55+
###### 5.1 Plotting a horizontal bar/histogram
56+
57+
# Notebook 2: "Python-Data Combining.ipynb"- Contains various techniques on combining/merging the dataframes. This notebook contains the below topics
58+
59+
60+
# Topic 1: Data Combine
61+
###### 1.1 Combining dataframes using concat function
62+
###### 1.2 Combining dataframes using concat function- with Ignore Index option
63+
###### 1.4 Combining dataframes using Merge function (Inner Join)
64+
###### 1.5 Combining dataframes using Merge function (left Join)
65+
###### 1.6 Combining dataframes using Merge function (right Join)
66+
###### 1.7 Combining dataframes using Merge function (outer Join)
67+
###### 1.8 Use of suffixes
68+
69+
# Topic 2: Transforming Data with Pandas- Using map(), apply(), applymap(), apply(), melt()
70+
###### 2.1 Creation of new column based on cases (this is more like CASE statement in SAS/SQL)
71+
###### 2.2 Difference between apply() and map()
72+
###### 2.3 Use of applymap()
73+
###### 2.4 Using pd.melt(): unpivots a Dataframe from wide format to long format
74+
75+
# Topic 3: Working with Strings in Pandas
76+
###### 3.1 Renaming one of the column
77+
###### 3.2 Commonly used String functions
78+
###### 3.3 Calculating the lenth of a string for one column and store it in a different column
79+
###### 3.4 Creating a new calculated column by converting the string stored in one column to upper case letters
80+
###### 3.5 Pattern Searching- Using contains
81+
###### 3.6 extract() and extractall()
82+
83+
# Topic 4: Working with Missing and Duplicate Data
84+
###### 4.1 Identifying missing values
85+
###### 4.2 Indentifying the duplicate values
86+
###### 4.3 Dropping the duplicates
87+
###### 4.4 Imputation of missing values with mean or any fixed value- Using fillna()
88+
###### 4.5 Dropping rows/columns which contains missing values

0 commit comments

Comments
 (0)