Open
Description
Just noticed also that enabling VAE tiling while using TAESD will cause a crash for small TAESD buffer. Maybe in this case just ignore the tiling if the buffer is < a certain size
rmatif ➜ /workspaces/stable-diffusion.cpp (master) $ ./build/bin/sd -m models/Realistic_Vision_V6.0_NV_B1_fp16.safetensors --taesd models/taesd.safetensors -p "cute cat" -v -H 256 -W 256 --vae-tiling --cfg-scale 1 --steps 1
Option:
n_threads: 4
mode: txt2img
model_path: models/Realistic_Vision_V6.0_NV_B1_fp16.safetensors
wtype: unspecified
clip_l_path:
clip_g_path:
t5xxl_path:
diffusion_model_path:
vae_path:
taesd_path: models/taesd.safetensors
esrgan_path:
controlnet_path:
embeddings_path:
stacked_id_embeddings_path:
input_id_images_path:
style ratio: 20.00
normalize input image : false
output_path: output.png
init_img:
mask_img:
control_image:
clip on cpu: false
controlnet cpu: false
vae decoder on cpu:false
diffusion flash attention:false
strength(control): 0.90
prompt: cute cat
negative_prompt:
min_cfg: 1.00
cfg_scale: 1.00
slg_scale: 0.00
guidance: 3.50
eta: 0.00
clip_skip: -1
width: 256
height: 256
sample_method: euler_a
schedule: default
sample_steps: 1
strength(img2img): 0.75
rng: cuda
seed: 42
batch_count: 1
vae_tiling: true
upscale_repeats: 1
System Info:
SSE3 = 1
AVX = 1
AVX2 = 1
AVX512 = 0
AVX512_VBMI = 0
AVX512_VNNI = 0
FMA = 1
NEON = 0
ARM_FMA = 0
F16C = 1
FP16_VA = 0
WASM_SIMD = 0
VSX = 0
[DEBUG] stable-diffusion.cpp:188 - Using CPU backend
[INFO ] stable-diffusion.cpp:197 - loading model from 'models/Realistic_Vision_V6.0_NV_B1_fp16.safetensors'
[INFO ] model.cpp:908 - load models/Realistic_Vision_V6.0_NV_B1_fp16.safetensors using safetensors format
[DEBUG] model.cpp:979 - init from 'models/Realistic_Vision_V6.0_NV_B1_fp16.safetensors'
[INFO ] stable-diffusion.cpp:244 - Version: SD 1.x
[INFO ] stable-diffusion.cpp:277 - Weight type: f16
[INFO ] stable-diffusion.cpp:278 - Conditioner weight type: f16
[INFO ] stable-diffusion.cpp:279 - Diffusion model weight type: f16
[INFO ] stable-diffusion.cpp:280 - VAE weight type: f16
[DEBUG] stable-diffusion.cpp:282 - ggml tensor size = 400 bytes
[DEBUG] clip.hpp:171 - vocab size: 49408
[DEBUG] clip.hpp:182 - trigger word img already in vocab
[DEBUG] ggml_extend.hpp:1174 - clip params backend buffer size = 307.44 MB(RAM) (196 tensors)
[DEBUG] ggml_extend.hpp:1174 - unet params backend buffer size = 1640.25 MB(RAM) (686 tensors)
[DEBUG] stable-diffusion.cpp:419 - loading weights
[DEBUG] model.cpp:1727 - loading tensors from models/Realistic_Vision_V6.0_NV_B1_fp16.safetensors
|==================================================| 1130/1130 - 500.00it/s
[INFO ] tae.hpp:214 - loading taesd from 'models/taesd.safetensors', decode_only = true
[DEBUG] ggml_extend.hpp:1174 - taesd params backend buffer size = 2.34 MB(RAM) (67 tensors)
[INFO ] model.cpp:908 - load models/taesd.safetensors using safetensors format
[DEBUG] model.cpp:979 - init from 'models/taesd.safetensors'
[DEBUG] model.cpp:1727 - loading tensors from models/taesd.safetensors
|=========================> | 67/134 - 1000.00it/s[INFO ] tae.hpp:236 - taesd model loaded
[INFO ] stable-diffusion.cpp:503 - total params memory size = 1950.03MB (VRAM 2.34MB, RAM 1947.69MB): clip 307.44MB(RAM), unet 1640.25MB(RAM), vae 2.34MB(VRAM), controlnet 0.00MB(VRAM), pmid 0.00MB(RAM)
[INFO ] stable-diffusion.cpp:522 - loading model from 'models/Realistic_Vision_V6.0_NV_B1_fp16.safetensors' completed, taking 0.65s
[INFO ] stable-diffusion.cpp:556 - running in eps-prediction mode
[DEBUG] stable-diffusion.cpp:600 - finished loaded file
[DEBUG] stable-diffusion.cpp:1548 - txt2img 256x256
[DEBUG] stable-diffusion.cpp:1241 - prompt after extract and remove lora: "cute cat"
[INFO ] stable-diffusion.cpp:690 - Attempting to apply 0 LoRAs
[INFO ] stable-diffusion.cpp:1246 - apply_loras completed, taking 0.00s
[DEBUG] conditioner.hpp:357 - parse 'cute cat' to [['cute cat', 1], ]
[DEBUG] clip.hpp:311 - token length: 77
[DEBUG] ggml_extend.hpp:1126 - clip compute buffer size: 1.40 MB(RAM)
[DEBUG] conditioner.hpp:485 - computing condition graph completed, taking 178 ms
[INFO ] stable-diffusion.cpp:1379 - get_learned_condition completed, taking 178 ms
[INFO ] stable-diffusion.cpp:1402 - sampling using Euler A method
[INFO ] stable-diffusion.cpp:1439 - generating image: 1/1 - seed 42
[DEBUG] stable-diffusion.cpp:808 - Sample
[DEBUG] ggml_extend.hpp:1126 - unet compute buffer size: 49.43 MB(RAM)
|==================================================| 1/1 - 2.69s/it
[INFO ] stable-diffusion.cpp:1478 - sampling completed, taking 2.69s
[INFO ] stable-diffusion.cpp:1486 - generating 1 latent images completed, taking 2.75s
[INFO ] stable-diffusion.cpp:1489 - decoding 1 latents
[DEBUG] ggml_extend.hpp:616 - tile work buffer size: 3.06 MB
[DEBUG] ggml_extend.hpp:1126 - taesd compute buffer size: 480.00 MB(RAM)
[INFO ] ggml_extend.hpp:630 - processing 1 tiles
|==================================================| 1/1 - 0.00it/s
Segmentation fault (core dumped)
Metadata
Metadata
Assignees
Labels
No labels