|
| 1 | +// |
| 2 | +// algorithm - some algorithms in "Introduction to Algorithms", third edition |
| 3 | +// Copyright (C) 2018 lxylxy123456 |
| 4 | +// |
| 5 | +// This program is free software: you can redistribute it and/or modify |
| 6 | +// it under the terms of the GNU Affero General Public License as |
| 7 | +// published by the Free Software Foundation, either version 3 of the |
| 8 | +// License, or (at your option) any later version. |
| 9 | +// |
| 10 | +// This program is distributed in the hope that it will be useful, |
| 11 | +// but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 13 | +// GNU Affero General Public License for more details. |
| 14 | +// |
| 15 | +// You should have received a copy of the GNU Affero General Public License |
| 16 | +// along with this program. If not, see <https://www.gnu.org/licenses/>. |
| 17 | +// |
| 18 | + |
| 19 | +#ifndef MAIN |
| 20 | +#define MAIN |
| 21 | +#define MAIN_FordFulkerson |
| 22 | +#endif |
| 23 | + |
| 24 | +#ifndef FUNC_FordFulkerson |
| 25 | +#define FUNC_FordFulkerson |
| 26 | + |
| 27 | +#include "utils.h" |
| 28 | + |
| 29 | +#include "BFS.cpp" |
| 30 | + |
| 31 | +template <typename GT, typename T, typename WT> |
| 32 | +void FordFulkerson(GT& G, umap<Edge<T>, WT, EdgeHash<size_t>>& c, |
| 33 | + T s, T t, umap<Edge<T>, WT, EdgeHash<size_t>>& f) { |
| 34 | + for (auto i = G.all_edges(); !i.end(); i++) |
| 35 | + f[*i] = 0; |
| 36 | + auto get_c = [&G, &c, &f](T u, T v) mutable -> WT { |
| 37 | + if (G.is_edge(u, v)) { |
| 38 | + Edge<T> e = Edge<T>(u, v, G.dir); |
| 39 | + return c[e] - f[e]; |
| 40 | + } else if (G.is_edge(v, u)) |
| 41 | + return f[Edge<T>(v, u, G.dir)]; |
| 42 | + else |
| 43 | + return 0; |
| 44 | + }; |
| 45 | + while (true) { |
| 46 | + GT Gf(G.dir); |
| 47 | + for (auto i = G.all_edges(); !i.end(); i++) { |
| 48 | + T u = i.s(), v = i.d(); |
| 49 | + if (get_c(u, v)) |
| 50 | + Gf.add_edge(u, v); |
| 51 | + if (get_c(v, u)) |
| 52 | + Gf.add_edge(v, u); |
| 53 | + } |
| 54 | + umap<T, BFSInfo<T>> BFS_ans; |
| 55 | + BFS(Gf, s, BFS_ans); |
| 56 | + std::vector<size_t> p; |
| 57 | + PrintPath(s, t, BFS_ans, p); |
| 58 | + if (!p.size()) |
| 59 | + break; |
| 60 | + WT cfp = get_c(p[0], p[1]); |
| 61 | + for (size_t i = 2; i < p.size(); i++) |
| 62 | + cfp = std::min(cfp, get_c(p[i - 1], p[i])); |
| 63 | + for (size_t i = 1; i < p.size(); i++) { |
| 64 | + if (G.is_edge(p[i - 1], p[i])) |
| 65 | + f[Edge<T>(p[i - 1], p[i], G.dir)] += cfp; |
| 66 | + else |
| 67 | + f[Edge<T>(p[i], p[i - 1], G.dir)] -= cfp; |
| 68 | + } |
| 69 | + } |
| 70 | +} |
| 71 | +#endif |
| 72 | + |
| 73 | +#ifdef MAIN_FordFulkerson |
| 74 | +int main(int argc, char *argv[]) { |
| 75 | + const size_t v = get_argv(argc, argv, 1, 5); |
| 76 | + const size_t e = get_argv(argc, argv, 2, 10); |
| 77 | + const bool dir = true; |
| 78 | + const int weight_lower = get_argv<int>(argc, argv, 3, 0); |
| 79 | + const int weight_upper = get_argv<int>(argc, argv, 4, e); |
| 80 | + GraphAdjList<size_t> G(dir); |
| 81 | + random_graph(G, v, e); |
| 82 | + umap<Edge<size_t>, int, EdgeHash<size_t>> c; |
| 83 | + random_weight(G, c, weight_lower, weight_upper); |
| 84 | + umap<Edge<size_t>, int, EdgeHash<size_t>> f; |
| 85 | + FordFulkerson(G, c, 0ul, v - 1ul, f); |
| 86 | + auto f1 = [v](size_t vv) { |
| 87 | + if (vv == v - 1 || vv == 0) |
| 88 | + std::cout << " [style=bold]"; |
| 89 | + return false; |
| 90 | + }; |
| 91 | + auto f2 = [c, f](Edge<size_t> e) mutable { |
| 92 | + std::cout << " [label=\"" << f[e] << "/" << c[e] << "\""; |
| 93 | + if (f[e]) |
| 94 | + std::cout << " style=bold"; |
| 95 | + std::cout << "]"; |
| 96 | + }; |
| 97 | + graphviz(G, f1, f2); |
| 98 | + return 0; |
| 99 | +} |
| 100 | +#endif |
| 101 | + |
0 commit comments