-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathbasic_motion_detection_using_opencv.py
52 lines (36 loc) · 1.36 KB
/
basic_motion_detection_using_opencv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import cv2
import numpy as np
cap = cv2.VideoCapture('test_images/vtest.avi')
ret , frame1 = cap.read()
ret , frame2 = cap.read()
while cap.isOpened():
# difference between first and second frame
diff = cv2.absdiff(frame1,frame2)
# convert it into gray ( for finding contours )
gray = cv2.cvtColor(diff , cv2.COLOR_BGR2GRAY)
# apply blur
blur = cv2.GaussianBlur(gray , (5,5) , 0)
# find threshold
_ , th = cv2.threshold(blur , 20 , 255 , cv2.THRESH_BINARY)
# dilate the images
dilated = cv2.dilate(th, None , iterations=3)
# find contours
contours , _ = cv2.findContours(dilated , cv2.RETR_TREE , cv2.CHAIN_APPROX_SIMPLE)
# draw contours
# cv2.drawContours(frame1 , contours , -1 , (0,255,0) , 3)
# Make rectangle around contours
for contour in contours:
(x,y,w,h) = cv2.boundingRect(contour)
if cv2.contourArea(contour) < 900:
continue
cv2.rectangle(frame1 ,(x,y) , (x+w,y+h) , (0,255,0) , 2)
cv2.putText(frame1,'Status: Movement' , (10,40) , cv2.FONT_HERSHEY_SIMPLEX ,1 , (255,0,0), 3)
cv2.imshow('feed' , frame1)
frame1 = frame2
ret , frame2 = cap.read()
# again read the frame for only second frame2
# that's how we calculate the difference between two frames
if cv2.waitKey(40) == 27:
break
cap.release()
cv2.destroyAllWindows()