-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathlane_detection_opencv.py
69 lines (50 loc) · 1.78 KB
/
lane_detection_opencv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import matplotlib.pyplot as plt
import cv2
import numpy as np
def region_of_interest(img, vertices):
mask = np.zeros_like(img)
# channel_count = img.shape[2]
match_mask_color = 255 #, ) * channel_count
cv2.fillPoly(mask, vertices, match_mask_color)
masked_image = cv2.bitwise_and(img, mask)
return masked_image
def draw_the_lines(img, lines):
img = np.copy(img)
blank_image = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8)
for line in lines:
for x1, y1, x2, y2 in line:
cv2.line(blank_image, (x1, y1), (x2, y2), (0,255,0), thickness=3)
img = cv2.addWeighted(img, 0.8, blank_image, 1, 0.0)
return img
# image = cv2.imread('road.jpg')
# image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
def process(image):
# print(image.shape)
height = image.shape[0]
width = image.shape[1]
region_of_interest_vertices = [
(0, height),
(width/2, height/2),
(width,height)
# (120, height),
# (width / 2, height / 2),
# (width, 180)
]
gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
canny_image = cv2.Canny(gray_image, 100, 120)
cropped_image = region_of_interest(canny_image,
np.array([region_of_interest_vertices], np.int32))
lines = cv2.HoughLinesP(cropped_image, rho=2, theta=np.pi/60, threshold=50, lines=np.array([]), minLineLength=40, maxLineGap=100)
image_with_lines = draw_the_lines(image, lines)
if lines is None:
image_with_lines = image
return image_with_lines
cap = cv2.VideoCapture('test_images/test_video.mp4')
while(cap.isOpened()):
ret, frame = cap.read()
frame = process(frame)
cv2.imshow('frame',frame)
if cv2.waitKeyEx(1) & 0xff == ord('q'):
break
cap.release()
cv2.destroyAllWindows()