|
| 1 | +# Partition Equal Subset Sum |
| 2 | + |
| 3 | +## Solution 1 |
| 4 | + |
| 5 | +DFS |
| 6 | + |
| 7 | +```java |
| 8 | +/** |
| 9 | + * Question : 416. Partition Equal Subset Sum |
| 10 | + * Complexity : Time: O(2^n) ; Space: O(n) |
| 11 | + * Topics : DP |
| 12 | + */ |
| 13 | +class Solution { |
| 14 | + public boolean canPartition(int[] nums) { |
| 15 | + int totalSum = 0; |
| 16 | + for (int num : nums) { |
| 17 | + totalSum += num; |
| 18 | + } |
| 19 | + |
| 20 | + if (totalSum % 2 != 0) { |
| 21 | + return false; |
| 22 | + } |
| 23 | + |
| 24 | + return canPartitionUtil(nums, totalSum / 2, nums.length); |
| 25 | + } |
| 26 | + |
| 27 | + private boolean canPartitionUtil(int[] nums, int sum, int n) { |
| 28 | + if (sum == 0) { |
| 29 | + return true; |
| 30 | + } |
| 31 | + if (sum < 0 || n == 0) { |
| 32 | + return false; |
| 33 | + } |
| 34 | + |
| 35 | + if (nums[n - 1] > sum) { |
| 36 | + return canPartitionUtil(nums, sum, n - 1); |
| 37 | + } |
| 38 | + return canPartitionUtil(nums, sum - nums[n - 1], n - 1) || canPartitionUtil(nums, sum, n - 1); |
| 39 | + } |
| 40 | +} |
| 41 | +``` |
| 42 | + |
| 43 | +## Solution 2 |
| 44 | + |
| 45 | +DP |
| 46 | + |
| 47 | +```java |
| 48 | +/** |
| 49 | + * Question : 416. Partition Equal Subset Sum |
| 50 | + * Complexity : Time: O(n * amount) ; Space: O(n * amount) |
| 51 | + * Topics : DP |
| 52 | + */ |
| 53 | +class Solution { |
| 54 | + public boolean canPartition(int[] nums) { |
| 55 | + int totalSum = 0; |
| 56 | + for (int num : nums) { |
| 57 | + totalSum += num; |
| 58 | + } |
| 59 | + |
| 60 | + if (totalSum % 2 != 0) { |
| 61 | + return false; |
| 62 | + } |
| 63 | + |
| 64 | + int sum = totalSum / 2; |
| 65 | + int n = nums.length; |
| 66 | + |
| 67 | + // dp[i][j]: if we can generate j amount using i numbers. |
| 68 | + boolean[][] dp = new boolean[n + 1][sum + 1]; |
| 69 | + for (int i = 0; i <= n; i++) { |
| 70 | + dp[i][0] = true; |
| 71 | + } |
| 72 | + |
| 73 | + for (int i = 1; i <= n; i++) { |
| 74 | + for (int currSum = 1; currSum <= sum; currSum++) { |
| 75 | + if (currSum >= nums[i - 1]) { |
| 76 | + dp[i][currSum] = dp[i - 1][currSum] || dp[i - 1][currSum - nums[i - 1]]; |
| 77 | + } else { |
| 78 | + dp[i][currSum] = dp[i - 1][currSum]; |
| 79 | + } |
| 80 | + } |
| 81 | + } |
| 82 | + |
| 83 | + return dp[n][sum]; |
| 84 | + } |
| 85 | +} |
| 86 | +``` |
0 commit comments