|
| 1 | +package Stack; |
| 2 | + |
| 3 | +public class MaxRectangle { |
| 4 | + |
| 5 | + public static int[] nextsmallerelement(int[] arr, int n) |
| 6 | + { |
| 7 | + |
| 8 | + Stack<Integer> st = new Stack<>(); |
| 9 | + |
| 10 | + // For the elements which dont have |
| 11 | + // next smaller element ans will be -1 |
| 12 | + st.push(-1); |
| 13 | + |
| 14 | + // Store indices in output |
| 15 | + int[] right = new int[n]; |
| 16 | + |
| 17 | + // Start from last index |
| 18 | + for (int i = n - 1; i >= 0; i--) { |
| 19 | + |
| 20 | + // If top element is sorted then |
| 21 | + // no need to do anything, just store |
| 22 | + // the answer and push the |
| 23 | + // current element in stack |
| 24 | + if ((st.peek() != -1) |
| 25 | + && arr[st.peek()] < arr[i]) { |
| 26 | + right[i] = st.peek(); |
| 27 | + st.push(i); |
| 28 | + } |
| 29 | + else { |
| 30 | + while ((st.peek() != -1) |
| 31 | + && arr[st.peek()] |
| 32 | + >= arr[i]) { |
| 33 | + st.pop(); |
| 34 | + } |
| 35 | + right[i] = st.peek(); |
| 36 | + st.push(i); |
| 37 | + } |
| 38 | + } |
| 39 | + return right; |
| 40 | + } |
| 41 | + |
| 42 | + public static int[] previousmallerelement(int arr[],int n) |
| 43 | + { |
| 44 | + Stack<Integer> st = new Stack<>(); |
| 45 | + st.push(-1); |
| 46 | + |
| 47 | + int[] left = new int[n]; |
| 48 | + |
| 49 | + // Start from first index - Difference Between Next and Previous Smaller element |
| 50 | + for (int i = 0; i < n; i++) { |
| 51 | + if ((st.peek() != -1) |
| 52 | + && arr[st.peek()] < arr[i]) { |
| 53 | + left[i] = st.peek(); |
| 54 | + st.push(i); |
| 55 | + } |
| 56 | + else { |
| 57 | + while ((st.peek() != -1) |
| 58 | + && arr[st.peek()] |
| 59 | + >= arr[i]) { |
| 60 | + st.pop(); |
| 61 | + } |
| 62 | + left[i] = st.peek(); |
| 63 | + st.push(i); |
| 64 | + } |
| 65 | + } |
| 66 | + return left; |
| 67 | + } |
| 68 | + public static int getMaxArea(int [] arr, int n) |
| 69 | + { |
| 70 | + int [] right = new int [n]; |
| 71 | + right = nextsmallerelement(arr, n); |
| 72 | + |
| 73 | + // Find the smallest element than |
| 74 | + // curr element in right side |
| 75 | + |
| 76 | + int [] left = new int [n]; |
| 77 | + left = previousmallerelement(arr, n); |
| 78 | + |
| 79 | + // Find the smallest element |
| 80 | + // than curr element in left side |
| 81 | + int maxarea = Integer.MIN_VALUE; |
| 82 | + |
| 83 | + // Now the left and right array have |
| 84 | + // index of smallest element in left and |
| 85 | + // right respectively, thus the difference |
| 86 | + // of right - left - 1 will give us |
| 87 | + // breadth and thus |
| 88 | + // area = height(curr==arr[i]) * breadth; |
| 89 | + for (int i = 0; i < n; i++) { |
| 90 | + int height = arr[i]; |
| 91 | + if (right[i] == -1) { |
| 92 | + right[i] = n; |
| 93 | + } |
| 94 | + int breadth = right[i] - left[i] - 1; |
| 95 | + maxarea = Math.max(maxarea, |
| 96 | + height * breadth); |
| 97 | + } |
| 98 | + return maxarea; |
| 99 | + } |
| 100 | + |
| 101 | + public static int maxRectangleArea(int [][] M, int R, int C) |
| 102 | + { |
| 103 | + int area = getMaxArea(M[0], R); |
| 104 | + int maxarea = area; |
| 105 | + |
| 106 | + for (int i = 1; i < R; i++) { |
| 107 | + for (int j = 0; j < C; j++) { |
| 108 | + if (M[i][j] != 0) { |
| 109 | + |
| 110 | + // Add heights of previous rows |
| 111 | + // into current |
| 112 | + M[i][j] = M[i][j] |
| 113 | + + M[i - 1][j]; |
| 114 | + } |
| 115 | + else { |
| 116 | + |
| 117 | + // If current height is 0 then |
| 118 | + // don't add previous heights |
| 119 | + M[i][j] = 0; |
| 120 | + } |
| 121 | + } |
| 122 | + maxarea = Math.max(maxarea, |
| 123 | + getMaxArea(M[i], R)); |
| 124 | + } |
| 125 | + return maxarea; |
| 126 | + } |
| 127 | + public static void main(String[] args) { |
| 128 | + int R = 4, C = 4; |
| 129 | + int [][]amt = { |
| 130 | + { 0, 1, 1, 0 }, |
| 131 | + { 1, 1, 1, 1 }, |
| 132 | + { 1, 1, 1, 1 }, |
| 133 | + { 1, 1, 0, 0 }, |
| 134 | + }; |
| 135 | + System.out.println(maxRectangleArea(amt, R, C)); |
| 136 | + } |
| 137 | +} |
0 commit comments