|
15 | 15 | },
|
16 | 16 | {
|
17 | 17 | "cell_type": "code",
|
18 |
| - "execution_count": 2, |
| 18 | + "execution_count": null, |
19 | 19 | "metadata": {
|
20 | 20 | "collapsed": false
|
21 | 21 | },
|
22 |
| - "outputs": [ |
23 |
| - { |
24 |
| - "name": "stdout", |
25 |
| - "output_type": "stream", |
26 |
| - "text": [ |
27 |
| - "Extracting MNIST_data/train-images-idx3-ubyte.gz\n", |
28 |
| - "Extracting MNIST_data/train-labels-idx1-ubyte.gz\n", |
29 |
| - "Extracting MNIST_data/t10k-images-idx3-ubyte.gz\n", |
30 |
| - "Extracting MNIST_data/t10k-labels-idx1-ubyte.gz\n" |
31 |
| - ] |
32 |
| - } |
33 |
| - ], |
| 22 | + "outputs": [], |
34 | 23 | "source": [
|
35 | 24 | "def init_weights(shape):\n",
|
36 | 25 | " return tf.Variable(tf.random_normal(shape, stddev=0.01))\n",
|
|
46 | 35 | "cell_type": "code",
|
47 | 36 | "execution_count": 3,
|
48 | 37 | "metadata": {
|
49 |
| - "collapsed": true |
| 38 | + "collapsed": false |
50 | 39 | },
|
51 | 40 | "outputs": [],
|
52 | 41 | "source": [
|
|
57 | 46 | "\n",
|
58 | 47 | "py_x = model(X, w)\n",
|
59 | 48 | "\n",
|
60 |
| - "cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(py_x, Y)) # compute mean cross entropy (softmax is applied internally)\n", |
| 49 | + "cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=py_x, labels=Y)) # compute mean cross entropy (softmax is applied internally)\n", |
61 | 50 | "train_op = tf.train.GradientDescentOptimizer(0.05).minimize(cost) # construct optimizer\n",
|
62 | 51 | "predict_op = tf.argmax(py_x, 1) # at predict time, evaluate the argmax of the logistic regression"
|
63 | 52 | ]
|
64 | 53 | },
|
65 | 54 | {
|
66 | 55 | "cell_type": "code",
|
67 |
| - "execution_count": 4, |
| 56 | + "execution_count": null, |
68 | 57 | "metadata": {
|
69 | 58 | "collapsed": false
|
70 | 59 | },
|
71 |
| - "outputs": [ |
72 |
| - { |
73 |
| - "name": "stdout", |
74 |
| - "output_type": "stream", |
75 |
| - "text": [ |
76 |
| - "0 0.8842\n", |
77 |
| - "1 0.8969\n", |
78 |
| - "2 0.9031\n", |
79 |
| - "3 0.9076\n", |
80 |
| - "4 0.9102\n", |
81 |
| - "5 0.9118\n", |
82 |
| - "6 0.912\n", |
83 |
| - "7 0.9132\n", |
84 |
| - "8 0.9145\n", |
85 |
| - "9 0.9157\n", |
86 |
| - "10 0.9164\n", |
87 |
| - "11 0.9165\n", |
88 |
| - "12 0.917\n", |
89 |
| - "13 0.9175\n", |
90 |
| - "14 0.9174\n", |
91 |
| - "15 0.9178\n", |
92 |
| - "16 0.9184\n", |
93 |
| - "17 0.9192\n", |
94 |
| - "18 0.9193\n", |
95 |
| - "19 0.9198\n", |
96 |
| - "20 0.9197\n", |
97 |
| - "21 0.92\n", |
98 |
| - "22 0.9203\n", |
99 |
| - "23 0.9205\n", |
100 |
| - "24 0.9207\n", |
101 |
| - "25 0.9211\n", |
102 |
| - "26 0.9208\n", |
103 |
| - "27 0.921\n", |
104 |
| - "28 0.921\n", |
105 |
| - "29 0.9212\n", |
106 |
| - "30 0.9212\n", |
107 |
| - "31 0.9217\n", |
108 |
| - "32 0.9215\n", |
109 |
| - "33 0.9213\n", |
110 |
| - "34 0.9215\n", |
111 |
| - "35 0.9214\n", |
112 |
| - "36 0.9213\n", |
113 |
| - "37 0.9218\n", |
114 |
| - "38 0.9217\n", |
115 |
| - "39 0.9215\n", |
116 |
| - "40 0.9216\n", |
117 |
| - "41 0.9219\n", |
118 |
| - "42 0.9222\n", |
119 |
| - "43 0.9225\n", |
120 |
| - "44 0.9226\n", |
121 |
| - "45 0.9225\n", |
122 |
| - "46 0.9225\n", |
123 |
| - "47 0.9225\n", |
124 |
| - "48 0.9225\n", |
125 |
| - "49 0.9226\n", |
126 |
| - "50 0.9225\n", |
127 |
| - "51 0.9226\n", |
128 |
| - "52 0.9225\n", |
129 |
| - "53 0.9224\n", |
130 |
| - "54 0.9223\n", |
131 |
| - "55 0.9225\n", |
132 |
| - "56 0.9225\n", |
133 |
| - "57 0.9225\n", |
134 |
| - "58 0.9228\n", |
135 |
| - "59 0.9229\n", |
136 |
| - "60 0.9229\n", |
137 |
| - "61 0.923\n", |
138 |
| - "62 0.9231\n", |
139 |
| - "63 0.9233\n", |
140 |
| - "64 0.9234\n", |
141 |
| - "65 0.9236\n", |
142 |
| - "66 0.9236\n", |
143 |
| - "67 0.9236\n", |
144 |
| - "68 0.9237\n", |
145 |
| - "69 0.9235\n", |
146 |
| - "70 0.9235\n", |
147 |
| - "71 0.9235\n", |
148 |
| - "72 0.9235\n", |
149 |
| - "73 0.9235\n", |
150 |
| - "74 0.9236\n", |
151 |
| - "75 0.9236\n", |
152 |
| - "76 0.9235\n", |
153 |
| - "77 0.9235\n", |
154 |
| - "78 0.9236\n", |
155 |
| - "79 0.9238\n", |
156 |
| - "80 0.9239\n", |
157 |
| - "81 0.9238\n", |
158 |
| - "82 0.9238\n", |
159 |
| - "83 0.9238\n", |
160 |
| - "84 0.9236\n", |
161 |
| - "85 0.9236\n", |
162 |
| - "86 0.9236\n", |
163 |
| - "87 0.9238\n", |
164 |
| - "88 0.9238\n", |
165 |
| - "89 0.9238\n", |
166 |
| - "90 0.9237\n", |
167 |
| - "91 0.9236\n", |
168 |
| - "92 0.9235\n", |
169 |
| - "93 0.9235\n", |
170 |
| - "94 0.9237\n", |
171 |
| - "95 0.9237\n", |
172 |
| - "96 0.9237\n", |
173 |
| - "97 0.9237\n", |
174 |
| - "98 0.9237\n", |
175 |
| - "99 0.9237\n" |
176 |
| - ] |
177 |
| - } |
178 |
| - ], |
| 60 | + "outputs": [], |
179 | 61 | "source": [
|
180 | 62 | "# Launch the graph in a session\n",
|
181 | 63 | "with tf.Session() as sess:\n",
|
182 | 64 | " # you need to initialize all variables\n",
|
183 |
| - " tf.initialize_all_variables().run()\n", |
| 65 | + " tf.global_variables_initializer().run()\n", |
184 | 66 | "\n",
|
185 | 67 | " for i in range(100):\n",
|
186 | 68 | " for start, end in zip(range(0, len(trX), 128), range(128, len(trX)+1, 128)):\n",
|
187 | 69 | " sess.run(train_op, feed_dict={X: trX[start:end], Y: trY[start:end]})\n",
|
188 | 70 | " print(i, np.mean(np.argmax(teY, axis=1) ==\n",
|
189 | 71 | " sess.run(predict_op, feed_dict={X: teX})))"
|
190 | 72 | ]
|
| 73 | + }, |
| 74 | + { |
| 75 | + "cell_type": "code", |
| 76 | + "execution_count": null, |
| 77 | + "metadata": { |
| 78 | + "collapsed": true |
| 79 | + }, |
| 80 | + "outputs": [], |
| 81 | + "source": [] |
191 | 82 | }
|
192 | 83 | ],
|
193 | 84 | "metadata": {
|
194 | 85 | "kernelspec": {
|
195 |
| - "display_name": "Python 3", |
| 86 | + "display_name": "Python 2", |
196 | 87 | "language": "python",
|
197 |
| - "name": "python3" |
| 88 | + "name": "python2" |
198 | 89 | },
|
199 | 90 | "language_info": {
|
200 | 91 | "codemirror_mode": {
|
201 | 92 | "name": "ipython",
|
202 |
| - "version": 3 |
| 93 | + "version": 2 |
203 | 94 | },
|
204 | 95 | "file_extension": ".py",
|
205 | 96 | "mimetype": "text/x-python",
|
206 | 97 | "name": "python",
|
207 | 98 | "nbconvert_exporter": "python",
|
208 |
| - "pygments_lexer": "ipython3", |
209 |
| - "version": "3.5.2" |
| 99 | + "pygments_lexer": "ipython2", |
| 100 | + "version": "2.7.13" |
210 | 101 | }
|
211 | 102 | },
|
212 | 103 | "nbformat": 4,
|
|
0 commit comments