|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "metadata": { |
| 7 | + "collapsed": true |
| 8 | + }, |
| 9 | + "outputs": [], |
| 10 | + "source": [ |
| 11 | + "%matplotlib inline\n", |
| 12 | + "import matplotlib.pyplot as plt\n", |
| 13 | + "import tensorflow as tf\n", |
| 14 | + "import numpy as np\n", |
| 15 | + "from sklearn.metrics import confusion_matrix\n", |
| 16 | + "import time\n", |
| 17 | + "from datetime import timedelta\n", |
| 18 | + "import math" |
| 19 | + ] |
| 20 | + }, |
| 21 | + { |
| 22 | + "cell_type": "code", |
| 23 | + "execution_count": 2, |
| 24 | + "metadata": { |
| 25 | + "collapsed": true |
| 26 | + }, |
| 27 | + "outputs": [], |
| 28 | + "source": [ |
| 29 | + "filter_size1 = 5\n", |
| 30 | + "num_filters1 = 16\n", |
| 31 | + "filter_size2 = 5\n", |
| 32 | + "num_filters2 = 36\n", |
| 33 | + "fc_size = 128\n", |
| 34 | + "train_batch_size = 64\n", |
| 35 | + "test_batch_size = 256\n", |
| 36 | + "total_iterations = 500" |
| 37 | + ] |
| 38 | + }, |
| 39 | + { |
| 40 | + "cell_type": "code", |
| 41 | + "execution_count": 3, |
| 42 | + "metadata": { |
| 43 | + "collapsed": true |
| 44 | + }, |
| 45 | + "outputs": [], |
| 46 | + "source": [ |
| 47 | + "img_size = 28\n", |
| 48 | + "img_size_flat = img_size * img_size\n", |
| 49 | + "img_shape = (img_size, img_size)\n", |
| 50 | + "num_channels = 1\n", |
| 51 | + "num_classes = 10" |
| 52 | + ] |
| 53 | + }, |
| 54 | + { |
| 55 | + "cell_type": "code", |
| 56 | + "execution_count": 4, |
| 57 | + "metadata": { |
| 58 | + "collapsed": false |
| 59 | + }, |
| 60 | + "outputs": [ |
| 61 | + { |
| 62 | + "name": "stdout", |
| 63 | + "output_type": "stream", |
| 64 | + "text": [ |
| 65 | + "Successfully downloaded train-images-idx3-ubyte.gz 9912422 bytes.\n", |
| 66 | + "Extracting data/MNIST/train-images-idx3-ubyte.gz\n", |
| 67 | + "Successfully downloaded train-labels-idx1-ubyte.gz 28881 bytes.\n", |
| 68 | + "Extracting data/MNIST/train-labels-idx1-ubyte.gz\n", |
| 69 | + "Successfully downloaded t10k-images-idx3-ubyte.gz 1648877 bytes.\n", |
| 70 | + "Extracting data/MNIST/t10k-images-idx3-ubyte.gz\n", |
| 71 | + "Successfully downloaded t10k-labels-idx1-ubyte.gz 4542 bytes.\n", |
| 72 | + "Extracting data/MNIST/t10k-labels-idx1-ubyte.gz\n", |
| 73 | + "Size of:\n", |
| 74 | + "- Training-set:\t\t55000\n", |
| 75 | + "- Test-set:\t\t10000\n", |
| 76 | + "- Validation-set:\t5000\n" |
| 77 | + ] |
| 78 | + } |
| 79 | + ], |
| 80 | + "source": [ |
| 81 | + "from tensorflow.examples.tutorials.mnist import input_data\n", |
| 82 | + "data = input_data.read_data_sets('data/MNIST/', one_hot=True)\n", |
| 83 | + "print(\"Size of:\")\n", |
| 84 | + "print(\"- Training-set:\\t\\t{}\".format(len(data.train.labels)))\n", |
| 85 | + "print(\"- Test-set:\\t\\t{}\".format(len(data.test.labels)))\n", |
| 86 | + "print(\"- Validation-set:\\t{}\".format(len(data.validation.labels)))" |
| 87 | + ] |
| 88 | + }, |
| 89 | + { |
| 90 | + "cell_type": "code", |
| 91 | + "execution_count": 6, |
| 92 | + "metadata": { |
| 93 | + "collapsed": true |
| 94 | + }, |
| 95 | + "outputs": [], |
| 96 | + "source": [ |
| 97 | + "def plot_images(images, cls_true, cls_pred=None):\n", |
| 98 | + " assert len(images) == len(cls_true) == 9\n", |
| 99 | + " fig, axes = plt.subplots(3, 3)\n", |
| 100 | + " fig.subplots_adjust(hspace=0.3, wspace=0.3)\n", |
| 101 | + " for i, ax in enumerate(axes.flat):\n", |
| 102 | + " ax.imshow(images[i].reshape(img_shape), cmap='binary')\n", |
| 103 | + " if cls_pred is None:\n", |
| 104 | + " xlabel = \"True: {0}\".format(cls_true[i])\n", |
| 105 | + " else:\n", |
| 106 | + " xlabel = \"True: {0}, Pred: {1}\".format(cls_true[i], cls_pred[i])\n", |
| 107 | + " ax.set_xlabel(xlabel)\n", |
| 108 | + " ax.set_xticks([])\n", |
| 109 | + " ax.set_yticks([])\n", |
| 110 | + " plt.show()" |
| 111 | + ] |
| 112 | + }, |
| 113 | + { |
| 114 | + "cell_type": "code", |
| 115 | + "execution_count": 7, |
| 116 | + "metadata": { |
| 117 | + "collapsed": false |
| 118 | + }, |
| 119 | + "outputs": [ |
| 120 | + { |
| 121 | + "ename": "AttributeError", |
| 122 | + "evalue": "'DataSet' object has no attribute 'cls'", |
| 123 | + "output_type": "error", |
| 124 | + "traceback": [ |
| 125 | + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", |
| 126 | + "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", |
| 127 | + "\u001b[0;32m<ipython-input-7-39a5a64b8825>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mimages\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mdata\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtest\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mimages\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;36m9\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mcls_true\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mdata\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtest\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcls\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;36m9\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0mplot_images\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mimages\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mimages\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcls_true\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mcls_true\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", |
| 128 | + "\u001b[0;31mAttributeError\u001b[0m: 'DataSet' object has no attribute 'cls'" |
| 129 | + ] |
| 130 | + } |
| 131 | + ], |
| 132 | + "source": [ |
| 133 | + "images = data.test.images[0:9]\n", |
| 134 | + "cls_true = data.test.cls[0:9]\n", |
| 135 | + "plot_images(images=images, cls_true=cls_true)" |
| 136 | + ] |
| 137 | + }, |
| 138 | + { |
| 139 | + "cell_type": "code", |
| 140 | + "execution_count": 8, |
| 141 | + "metadata": { |
| 142 | + "collapsed": true |
| 143 | + }, |
| 144 | + "outputs": [], |
| 145 | + "source": [ |
| 146 | + "def new_weights(shape):\n", |
| 147 | + " return tf.Variable(tf.truncated_normal(shape, stddev=0.05))" |
| 148 | + ] |
| 149 | + }, |
| 150 | + { |
| 151 | + "cell_type": "code", |
| 152 | + "execution_count": null, |
| 153 | + "metadata": { |
| 154 | + "collapsed": true |
| 155 | + }, |
| 156 | + "outputs": [], |
| 157 | + "source": [] |
| 158 | + } |
| 159 | + ], |
| 160 | + "metadata": { |
| 161 | + "anaconda-cloud": {}, |
| 162 | + "kernelspec": { |
| 163 | + "display_name": "Python [conda root]", |
| 164 | + "language": "python", |
| 165 | + "name": "conda-root-py" |
| 166 | + }, |
| 167 | + "language_info": { |
| 168 | + "codemirror_mode": { |
| 169 | + "name": "ipython", |
| 170 | + "version": 3 |
| 171 | + }, |
| 172 | + "file_extension": ".py", |
| 173 | + "mimetype": "text/x-python", |
| 174 | + "name": "python", |
| 175 | + "nbconvert_exporter": "python", |
| 176 | + "pygments_lexer": "ipython3", |
| 177 | + "version": "3.5.2" |
| 178 | + } |
| 179 | + }, |
| 180 | + "nbformat": 4, |
| 181 | + "nbformat_minor": 1 |
| 182 | +} |
0 commit comments